College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
In the figure, a ball is thrown leftward from the left edge of the roof, at height h above the ground. The ball hits the ground 2.10 s later, at distance d = 26.0 m from the building and at angle θ = 65.0° with the horizontal. (a) Find h. (Hint: One way is to reverse the motion, as if on videotape.) What are the (b) magnitude and (c) angle relative to the horizontal of the velocity at which the ball is thrown (positive angle for above horizontal, negative for below)?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- letter d onlyarrow_forwardA basketball player is shooting some hoops, on one particular shot the ball leaves her hands 12.5m horizonally away from the hoop, and 1.8m vertically off the ground. Let's say she shoots a particular shot with a velocity of 12m/s at an angle of 51.4° with respect to the vertical (Assume no air resistance)arrow_forwardIn the figure here, a ball is thrown up onto a roof, landing 4.50 s later at height h = 18.0 m above the release level. The ball's path just before landing is angled at 0 = 54.0° with the roof. (a) Find the horizontal distance d it travels. (Hint: One way is to reverse the motion, as if it is on a video.) What are the (b) magnitude and (c) angle (relative to the horizontal) of the ball's initial velocity? (a) Number (b) Number (c) Number i Unit Unit Unit - d 00:00 ◄► ♥arrow_forward
- In the figure here, a ball is thrown up onto a roof, landing 4.40 s later at height h = 24.0 m above the release level. The ball's path just before landing is angled at 0= 63.0° with the roof. (a) Find the horizontal distance d it travels. (Hint: One way is to reverse the motion, as if it is on a video.) What are the (b) magnitude and (c) angle (relative to the horizontal) of the ball's initial velocity? 0000 (a) Number i (b) Number i (c) Number i Unit Unit Unitarrow_forwardIn the figure, a ball is thrown leftward from the left edge of the roof, at height h above the ground. The ball hits the ground 1.60 s later, at distance d = 25.0 m from the building and at angle 8 = 69.0° with the horizontal. (a) Find h. (Hint: One way is to reverse the motion, as if on videotape.) What are the (b) magnitude and (c) angle relative to the horizontal of the velocity at which the ball is thrown (positive angle for above horizontal, negative for below)? (a) Number i (b) Number i Units Unitsarrow_forwardWhen adding vectors (3,30°) + (5,120) + (7,225°), what is the magnitude of the resultant? О 3.96 O 2.81 О 5.72 O 6.47 O 4.93arrow_forward
- In the figure here, a ball is thrown up onto a roof, landing 5.00 s later at height h = 22.0 m above the release level. The ball's path just before landing is angled at 0 = 65.0° with the roof. (a) Find the horizontal distance d it travels. (Hint: One way is to reverse the motion, as if it is on a video.) What are the (b) magnitude and (c) angle (relative to the horizontal) of the ball's initial velocity? 0000 (a) Number (b) Number (c) Number Unit Unit Unit <arrow_forwardA remote-controlled car is moving around in a level (horizontal) parking lot. The velocity of the car as a function of time is given by: 3 = [5.0m/s – (0.018m/s³)t²]î + [2.0m/s + (0.55m/s²)t]j where î and ĵ are unit vectors representing two perpendicular directions on the horizontal ground (think of them as the East and North directions, if that helps you). b). What are the magnitude and direction of the car's velocity at t = 8.0 s? c). What are the magnitude and direction of the car's acceleration at t = 8.0 s? (Don't be intimated by the velocity function! Look at the î and ĵ components, and work each component separately to begin with, before combining components together to get any resultant vectors, if needed.)arrow_forwardProblem 3: An arrow is shot from a height of 1.8 m toward a cliff of height H. It is shot with a velocity of 35 m/s at an angle of 60° above the horizontal. It lands on the top edge of the cliff 3.7 s later. What is the height H of the cliff in m? H = cos() asin() sin() tan() 7 8 9 HOME cotan() acos() 5 atan() acotan() sinh() 1 2 3 cosh() tanh() cotanh() + END ODegrees O Radians vol BACKSPACE DEL CLEAR Submit Hint Feedback I give up! What is the maximum height reached by the arrow along its trajectory in meters? What is the arrow's speed just before hitting the cliff in m/s?arrow_forward
- Questions 1 through 3 pertain to the situation described below: An archer wants to launch an arrow from a bow to clear a treetop that is 35.0 m vertically above, and 97.0 m horizontally away from, the launching location. Assume that the launching speed is 57.0 m/s and the launching angle is 0 above the horizontal. (1) How much does the arrow clear the treetop if 0 = 30.0°? (A) 3.6 m; (B) 3.1 m; (C) 2.6 m; (D) 2.1 m; (E) 1.6 m. (2) What is the maximum horizontal range of the arrow if 0 can vary? (A) 212 m; (B) 242 m; (C) 272 m; (D) 302 m; (E) 332 m. (3) What is the range of 0 for the arrow to clear the treetop? (A) 29.9-86.0°; (B) 28.9–81.0°; (C) 27.9–76.0°; (D) 26.9–71.0°; (E) 25.9–66.0°.arrow_forward3. 15. A skateboarder shoots off a ramp with a velocity of 6.6 m/s, directed at an angle of 58° above the horizontal. The end of the ramp is 1.2 m above the ground. Let the x axis be parallel to the ground, the +y direction be vertically upward, and take as the origin the point on the ground directly below the top of the ramp. (a) How high above the ground is the highest point that the skateboarder reaches? (b) When the skateboarder reaches the highest point, how far is this point horizontally from the end of the ramp?arrow_forwardA person stands at the edge of a cliff and throws a rock horizontally over the edge with a speed of Vo = 22.0 m/s. The rock leaves his hand at a height of h = 46.0 m above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the rock leaves the hand. = i (a) What are the coordinates of the initial position of the rock? (Enter your answers in m.) хо Yo = Voy Vy y = 4o (b) What are the components of the initial velocity? (Enter your answers in m/s.) Vox m/s m/s 11 m m (c) Write the equations for the x- and y-components of the velocity of the rock with time. (Use the following as necessary: t. Assume that vx and v, are in m/s and t is in seconds. Do not include units in your answers.) oral m/s m/s Simuna wir + Accumo that y andy are in meters and it is in seconds. Do notarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON