College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
In the diagram below, a rectangular 40 loop coil of width w=10 cm and length l= 14 cm begins in a region with no electric field and then moves to be completely inside a region of uniform B=1.3 T coming out of the page. If this process occurs over a time period of 3 s, what is the magnitude of the induced emf in the coil of wire?
a) 0 V
b) 0.0061 V
c) 0.243 V
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A large power plant generates electricity at 12.0 kV. Its old transformer once converted the voltage to 360 kV. The secondary coil of this transformer is being replaced so that its output can be 770 kV for more efficient cross-country transmission on upgraded transmission lines.Randomized Variables V1 = 360 kVV2 = 770 kV a) What is the ratio of turns in the new secondary to the number of turns in the old secondary? b) What is the ratio of new current output to the old current output for the same power input to the transformer? c) If the upgraded transmission lines have the same resistance as the original ones, what is the ratio of new line power loss to the old?arrow_forwardA 75 turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 rad/s in a 1.40 T field, starting with the normal of the plane of the coil perpendicular to the field. Assume that the positive max emf is reached first. a)What (in V) is the peak emf? b) At what time (in s) is the peak emf first reached? c) At what time (in s) is the emf first at its most negative? and d) What is the period (in s) of the AC voltage output?arrow_forwardSuppose the 50 turn coil in the figure below lies in the plane of the page and originally has an area of 0.230 m². It is stretched to have no area in 0.100 s. X Bin XBin X V What is the direction? clockwise X counterclockwise X X What is the magnitude (in V) of the average value of the induced emf if the uniform magnetic field points into the page and has a strength of 1.75 T? X X 192 Xarrow_forward
- The figure below displays a circular loop of conducting wire in a uniform magnetic field pointing into the page. The radius of the loop is 10.0 cm and the magnitude of the field is 0.160 T. You grab points A and B and pull them in opposite directions, stretching the loop until its area is nearly zero, taking a time of 0.170 s to do so. What is the magnitude of the average induced emf in the loop (in mV) during this time? * х * X x х A x * * x K mV X x * x. B * * *arrow_forwardThe magnetic flux through the loop increases according to the relation shown below. What is the magnitude of the induced emf in the loop when t = 3.0 sarrow_forwardA generator uses a coil that has 370 turns and a 0.49-T magnetic field. The frequency of this generator is 60.0 Hz, and its emf has an rms value of 120 V. Assuming that each turn of the coil is a square (an approximation), determine the length of the wire from which the coil is made. B N Number Units Sarrow_forward
- The flexible loop in the figure below has a radius of 12 cm and is in a magnetic field of strength 0.17 T. The loop is grasped at points A and B and stretched until its area is nearly zero. If it takes 0.25 s to close the loop, what is the magnitude of the average induced emf (in mV) in it during this time? @ |ε] = x x x X X mV X.AX A X XBOX X X x X *arrow_forwardTHANK YOUarrow_forwardProblem 1. The wire is moving to the left with a linear velocity of 10 m/s as shown. Determine the magnitude and direction of the emf induced in the wire. Include a brief explanation. X X 45° Xv = 10 m/s 1=0.25 m X, X B= 02 T, into the page XE Xarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON