MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
In interpreting the multiple regression equation, it can be a mistake to conclude that one independent variable is more important than another just because its partial regression coefficient happens to be large.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- A local University conducted a survey of over 2,000 MBA alumni to explore the issue of work-life balance. Each participant received a score ranging from 0 to 100, with lower scores indicating a higher imbalance between work and life. A sample of the data is available below. Let x=average number of hours worked per week and y= work-life balance scale score for each MBA alumnus. Investigate the link between these two variables by conducting a complete simple linear regression analysis of the data. Summarize your findings. Hours WLB Score 50 74.09 45 72.45 50 52.93 55 44.33 50 69.15 60 54.79 55 56.26 60 20.44 55 6-.64 50 69.15 70 29.16 45 72.45 40 33.25 40 32.18 45 45.76 a. What is the test statistic for the hypotheses? t=______ b. What is the p-value for the test statistic? p-value=________ c. What is the value for the coeffiecent of determination r^2? r^2=________arrow_forwardIn a laboratory experiment, data were gathered on the life span (y in months) of 33 rats, units of daily protein intake (x1), and whether or not agent x2 (a proposed life-extending agent) was added to the rats' diet (x2 = 0 if agent x2 was not added, and x2 = 1 if agent was added). From the results of the experiment, the following regression model was developed:ŷ = 36 + .8x1 − 1.7x2Also provided are SSR = 60 and SST = 180.The test statistic for testing the significance of the model is _____. a. 5.00 b. .50 c. .25 d. .33arrow_forwardMight we be able to predict life expectancies from birthrates? Below are bivariate data giving birthrate and life expectancy information for each of twelve countries. For each of the countries, both x, the number of births per one thousand people in the population, and y, the female life expectancy (in years), are given. Also shown are the scatter plot for the data and the least-squares regression line. The equation for this line is y = 82.17 -0.47x. Birthrate, x (number of births per 1000 people) 14.3 27.4 51.1 46.8 24.9 29.9 18.2 41.6 49.4 14.1 33.9 49.3 Send data to calculator Female life expectancy, y (in years) 75.6 70.5 58.2 59.0 73.3 62.7 73.6 65.2 62.4 74.3 67.0 53.9 Send data to Excel Female life expectancy (In years) Based on the sample data and the regression line, answer the following. 85+ 80+ 75+ 70+ 65 60 55+ 50 (a) From the regression equation, what is the predicted female life expectancy (in years) when the birthrate is 29.9 births per 1000 people? Round your answer to…arrow_forward
- What other methods could one try if a linear regression does not perform well?arrow_forwardThe director of marketing at Reeves Wholesale Products is studying monthly sales. Three independent variables were selected as estimators of sales: regional population, per capita income, and regional unemployment rate. The regression equation was computed to be (in dollars): ŷ = 64,100 + 0.394x, + 9.6x2 – 11,600x3 Note: Here, the variables x1, X2 and x3 refer to regional population, per capita income, and regional unemployment rate respectively. a. Choose the right option for the full name of the equation: O Multiple regression equation O Single linear equation O single two linear equation b. Interpret the number 64,100. X1 intercept O x2 intercept O y-intercept c. What are the estimated monthly sales for a particular region with a population of 796,000, per capita income of $6,940, and an unemployment rate of 6.0%? Estimated monthly salesarrow_forwardMight we be able to predict life expectancies from birthrates? Below are bivariate data giving birthrate and life expectancy information for each of twelve countries. For each of the countries, both x, the number of births per one thousand people in the population, and y, the female life expectancy (in years), are given. Also shown are the scatter plot for the data and the least-squares regression line. The equation for this line is y= 82.15 – 0.47x. 00 Birthrate, x Female life expectancy, y (in years) (number of births per 1000 people) 40.4 65.2 85- 50.4 59.0 80+ 18.4 71.6 75- 26.5 69.9 70 32.0 64.5 65- 51.7 52.9 60- 34.4 67.2 14.6 75.9 50.1 45.8 59.2 49.9 62.1 Birthrate 73.7 26.2 (number of births per 1000 people) 73.7 14.4 Save For Later Submit Assignment Check 2 Accessibility O 2022 McGraw Hill LLC AN Rights Reserved. Terms of Use / Privacy Center DO 80 DIl 110 17 Da SO FA F4 esc F2 & delete %24 % 8 %23 6 7 3 4 7. U T K LA G S D Female life expectancy (in years)arrow_forward
- Where we observe multicollinearity in a multiple regression analysis, two of our independent variables, x-1 and x-4, are so highly correlated they’re almost indistinguishable with respect to their relationship with our dependent (y) variable. Why is that a problem?arrow_forwardIf the R-squared for a regression model relating the outcome y to an explanatory variable x is 0.9. This implies that there is a positive linear relationship between y and x. True or false?arrow_forwardA company that manufactures computer chips wants to use a multiple regression model to study the effect that 3 different variables have on y, the total daily production cost (in thousands of dollars). Let B,, B,, and B, denote the coefficients of the 3 variables in this model. Using 22 observations on each of the variables, the software program used to find the estimated regression model reports that the total sum of squares (SST) is 485.84 and the regression sum of squares (SSR) is 229.91. Using a significance level of 0.10, can you conclude that at least one of the independent variables in the model provides useful (i.e., statistically significant) information for predicting daily production costs? Perform a one-tailed test. Then complete the parts below. Carry your intermediate computations to three or more decimal places. (a) State the null hypothesis H, for the test. Note that the alternative hypothesis H, is given. H, :0 H, : at least one of the independent variables is useful…arrow_forward
- 4. Our R² implies that lots of stuff, other than health, also affects doctor visits. One such thing is a person's insurance status. The data file includes a third variable that records whether the person had health insurance during 2019. Estimation a regression of the form y = Bo + B₁x1 + B₂x₂ where x₁ is the health status variable from above, but now x₂ records whether the person had insurance. a) Interpret the estimate of B₁ in words. b) Interpret the estimate of B₂ in words. c) Forecast a person's number of doctor visits in 2019 if he/she was in excellent health, but did not have insurance. d) Forecast a person's number of doctor visits in 2019 if he/she was in poor health, and did have insurance. e) The R² for this regression isarrow_forwardA local University conducted a survey of over 2,000 MBA alumni to explore the issue of work-life balance. Each participant received a score ranging from 0 to 100, with lower scores indicating a higher imbalance between work and life. A sample of the data is available below. Let x = average number of hours worked per week and y=work-life balance scale score for each MBA alumnus. Investigate the link between these two variables by conducting a complete simple linear regression analysis of the data. Summarize your findings. E Click the icon to view the data. The least squares regression equation is y =+ (Ox. (Round to two decimal places as needed.) Revenue and Message Rate for Recent Movies Check the usefulness of the hypothesized model. What are the hypotheses to test? O A. H Bo =0 against H: Bo #0 Hours WLB Score 50 75.22 B. H: B, #0 against H: B, =0 45 78.45 OC. H B, = 0 against H B, 0 50 49.68 55 40.11 OD. H Bo#0 against H: Bo =0 50 70.41 60 55.91 Determine the estimate of the…arrow_forwardWhen you are deciding which variables to include as predictors in a multiple regression equation, what are some conditions that you must consider first?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman