MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- A study of king penguins looked for a relationship between how deep the penguins dive to seek food and how long they stay underwater. For all but the shallowest dives, there is a linear relationship that is different for different penguins. The study report gives a scatterplot for one penguin titled " The relation of dive duration (DD) to depth (D)." Duration DD is measured in minutes and depth D is in meters. The report then says, " The regression equation for this bird is: DD = 2.3 + 0.0021 D. %3D (a) What is the slope of the regression line?. ANSWER minutes per meter. (b) According to the regression line, how long does a typical dive to a depth of 400 meters last? ANSWER minutes.arrow_forwardPlease answer parts d, e and f.arrow_forwardMight we be able to predict life expectancies from birthrates? Below are bivariate data giving birthrate and life expectancy information for each of twelve countries. For each of the countries, both x, the number of births per one thousand people in the population, and y, the female life expectancy (in years), are given. Also shown are the scatter plot for the data and the least-squares regression line. The equation for this line is y=82.25 -0.48x. ^ Birthrate, x (number of births per 1000 people) 35.5 44.9 29.7 19.9 13.7 27.0 51.9 15.0 50.9 49.7 39.6 24.4 Send data to calculator Send data to Excel Female life expectancy, y (in years) 67.9 57.9 61.7 71.4 72.5 73.5 55.4 76.5 58.2 60.6 64.4 74.4 Based on the sample data and the regression line, complete the following. Female life expectancy (in years) 85 80+ 75+ 70- 65+ 60- 55+ 50 x X x ++ 10 15 20 25 (b) According to the regression equation, for an increase of one (birth per 1000 people) in birthrate, there is a corresponding decrease…arrow_forward
- Find the least-squares regression line treating square footage as the explanatory variable. y = (Round the slope to three decimal places as needed. Round the intercept to one decimal place as needed.)arrow_forwardThe datasetBody.xlsgives the percent of weight made up of body fat for 100 men as well as other variables such as Age, Weight (lb), Height (in), and circumference (cm) measurements for the Neck, Chest, Abdomen, Ankle, Biceps, and Wrist. We are interested in predicting body fat based on abdomen circumference. Find the equation of the regression line relating to body fat and abdomen circumference. Make a scatter-plot with a regression line. What body fat percent does the line predict for a person with an abdomen circumference of 110 cm? One of the men in the study had an abdomen circumference of 92.4 cm and a body fat of 22.5 percent. Find the residual that corresponds to this observation. Bodyfat Abdomen 32.3 115.6 22.5 92.4 22 86 12.3 85.2 20.5 95.6 22.6 100 28.7 103.1 21.3 89.6 29.9 110.3 21.3 100.5 29.9 100.5 20.4 98.9 16.9 90.3 14.7 83.3 10.8 73.7 26.7 94.9 11.3 86.7 18.1 87.5 8.8 82.8 11.8 83.3 11 83.6 14.9 87 31.9 108.5 17.3…arrow_forwardDr. Lillian Fok, a New Orleans psychologist, specializes in treating patients who are agoraphobic (i.e., afraid to leave their homes). The following table indicates how many patients Dr. Fok has seen each year for the past 10 years. It also indicates what the robbery rate was in New Orleans during the same year. Year Number of Patients Robbery Rate per 1,000 Population The simple linear regression equation that shows the best relationship between the number of patients and the robbery rate is (round your responses to three decimal places) where y Number of Patients and x = Robbery Rate. = 1 2 3 4 6 7 36 33 40 41 55 60 58.3 61.1 73.4 75.7 81.1 89.0 101.1 5 40 8 54 94.8 9 58 103.3 10 61 116.2arrow_forward
- Consumers are often interested in the fuel efficiency of the vehicles they choose to buy, so much so that they will research the various models they consider buying. Fuel efficiency can depend on a variety of variables. In this analysis, there are 73 automobiles that are popular with consumers. A regression analysis has been performed; the dependent variable is CityMPG (EPA miles per gallon in city driving), and independent variables are Length (vehicle length in inches), Width (vehicle width in inches), Weight (vehicle weight in pounds), and ManTran (1 if manual shift transmission, 0 otherwise). The level of significance is 0.05. Use the following MegaStat output to answer questions about this regression analysis. a. State the regression equation. b. How would CityMPG be affected if the width of a vehicle increased by an inch? c. Estimate the CityMPG for a vehicle with a length of 190 inches, a width of 75 inches, a weight of 4100 pounds, and a manual. Round your answer to the nearest…arrow_forwardWhy the regression line is a straight line rather than a curved line?arrow_forwardMight we be able to predict life expectancies from birthrates? Below are bivariate data giving birthrate and life expectancy information for each of twelve countries. For each of the countries, both x, the number of births per one thousand people in the population, and y, the female life expectancy (in years), are given. Also shown are the scatter plot for the data and the least-squares regression line. The equation for this line is y = 82.17 -0.47x. Birthrate, x (number of births per 1000 people) 14.3 27.4 51.1 46.8 24.9 29.9 18.2 41.6 49.4 14.1 33.9 49.3 Send data to calculator Female life expectancy, y (in years) 75.6 70.5 58.2 59.0 73.3 62.7 73.6 65.2 62.4 74.3 67.0 53.9 Send data to Excel Female life expectancy (In years) Based on the sample data and the regression line, answer the following. 85+ 80+ 75+ 70+ 65 60 55+ 50 (a) From the regression equation, what is the predicted female life expectancy (in years) when the birthrate is 29.9 births per 1000 people? Round your answer to…arrow_forward
- A study of king penguins looked for a relationship between how deep the penguins dive to seek food and how long they stay underwater. For all but the shallowest dives, there is a linear relationship that is different for different penguins. The study report gives a scatterplot for one penguin titled " The relation of dive duration (DD) to depth (D)." Duration DD is measured in minutes and depth D is in meters. The report then says, " The regression equation for this bird is: DD = 2.02 + 0.0081 D. (a) What is the slope of the regression line?. ANSWER minutes per meter. (b) According to the regression line, how long does a typical dive to a depth of 400 meters last? ANSWER minutes. Speakarrow_forwardFor major league baseball teams, do higher player payrolls mean more gate money? Here are data for each of the American League teams in the year 2002. The variable x denotes the player payroll (in millions of dollars) for the year 2002, and the variable y denotes the mean attendance (in thousands of fans) for the 81 home games that year. The data are plotted in the scatter plot below, as is the least-squares regression line. The equation for this line is y = 11.43 + 0.23x. Player payroll, x (in Mean attendance, y (in $1,000,000s) thousands) Anaheim 62.8 28.52 Baltimore 56.5 33.09 40- Boston 110.2 32.72 35 Chicago White Sox 54.5 20.74 30- Cleveland 74.9 32.35 25- Detroit 54.4 18.52 Kansas City 49.4 16.30 15- Minnesota 41.3 23.70 10+ New York Yankees 133.4 42.84 Oakland 41.9 26.79 20 40 60 80 100 120 140 Seattle 86.1 43.70 Player payroll, Тarmpa Bay 34.7 13.21 X (in $1,000,000s) Техas 106.9 29.01 Toronto 66.8 20.25 Send data to calculator Send data to Excel Based on the sample data and…arrow_forwardThere are 6 parts for this Question. Please helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman