Question
In about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each hand on one side and the fingers of the other side. Sincosky's mass was 79 kg. If the coefficient of static friction between hand and rafter was 0.55, what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky's grip was remarkable, try to repeat his stunt.)
Fnormal, min = N
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- A block of mass m; = 4.0 kg is put on top of a block of mass mh = 7.0 kg. To cause the top block to slip on the bottom one, while the bottom one is held fixed, a horizontal force of at least 19 N must be applied to the top block. The assembly of blocks is now placed on a horizontal, frictionless table. (a) Find the magnitude of the maximum horizontal force F that can be applied to the lower block so that the blocks will move together. N (b) Find the magnitude of the resulting acceleration of the blocks. m/s2arrow_forwardA passenger is standing on a scale in an elevator. The building has a height of 500 feet, the passenger has a mass of 80 kg, and the scale has a mass of 7 kg. The scale sits on the floor of the elevator. (It is an Otis elevator, so we will label it as "O" so as not to confuse its forces with those caused by the earth.) You may take g = 10 N/kg. For doing this problem it might be useful to start by drawing free-body diagrams for the passenger and the scale. Consider the vertical forces acting on the passenger and the scale WE→P: The force of the earth pulling down on the passenger (weight). WE→S: The force of the earth pulling down on the scale (weight). NP→S: The force of the passenger pushing down on the scale (normal). NS→P: The force of the scale pushing up on the passenger (normal). NO→S: The force of the elevator pushing up on the scale (normal). NO→P: The force of the elevator pushing up on the passenger (normal). Which of these forces affect the motion of the passenger? Select…arrow_forwardThe figure shows a section of a cable-car system. The maximum permissible mass of each car with occupants is 2200 kg. The cars, riding on a support cable, are pulled by a second cable attached to the support tower on each car. Assume that the cables are taut and inclined at angle 0 = 39º. What is the difference in tension between adjacent sections of pull cable if the cars are at the maximum permissible mass and are being accelerated up the incline at 0.85 m/s²? Number Units Support cable- Pull cablearrow_forward
- A block of mass m t = 4.0 kg is put on top of a block of mass m b = 5.0 kg. To cause the top block to slip on the bottom one while the bottom one is held fixed, a horizontal force of at least 12 N must be applied to the top block (not pictured). The assembly of blocks is now placed on a horizontal, frictionless table. Find the magnitudes of (a) the maximum horizontal force F that can be applied to the lower block so that the blocks will move together and (b) the resulting acceleration of the blocks.Can you solve this with a detailed explanationarrow_forwardStudents are performing an experiment with the setup shown above, where a block of mass M sits on a horizontal table. The coefficient of kinetic friction between the block and the table is μk. The block is connected to a hanging object over a pulley. The pulley has negligible mass and friction. The string connecting the two is very light and does not stretch. The students add mass to the hanging object so that its mass is m, where m < M, and the block-hanging object system is released from rest. The hanging object falls for a distance h, at which point it collides with the ground and comes to rest. The block on the table keeps sliding and travels a total distance d before coming to rest. It does not reach the pulley, and d > h. A student creates a data table (see image) for the net force exerted on the block during the speeding up and slowing down portions of the experiment. (d) Does the block of mass M spend more time speeding up or slowing down? Justify your answer.arrow_forwardA loaded penguin sled weighing 61.0 N rests on a plane inclined at angle θ = 23.0° to the horizontal (see the figure). Between the sled and the plane, the coefficient of static friction is 0.260, and the coefficient of kinetic friction is 0.120. (a) What is the minimum magnitude of the force ?→�→, parallel to the plane, that will prevent the sled from slipping down the plane? (b) What is the minimum magnitude F that will start the sled moving up the plane? (c) What value of F is required to move the sled up the plane at constant velocityarrow_forward
- A small box with a weight of 35.0 N is placed on top of a larger box that has a weight of 80.0 N. The system of two boxes is at rest on a horizontal surface (the larger box is in contact with the surface). You apply an additional downward force of 30.0 N to the top of the small box by resting your hand on it. For this problem, use g = 10 N/kg. (a) What is the magnitude of the force exerted on the large box by the small box? (b) What is the magnitude of the force exerted on the large box by the surface? Now, imagine that the horizontal surface is the floor of an elevator, and the boxes are in the elevator, which has an acceleration directed downward of 1.00 m/s?. (c) What is the magnitude of the force exerted on the large box by the small box in this case? (d) What is the magnitude of the force exerted on the large box by the surface in this case? Narrow_forwardIn about 1915, Henry Sincosky of Philadelphia suspended himself from a rafter by gripping the rafter with the thumb of each hand on one side and the fingers on the other side (see the figure). Sincosky's mass was 83.0 kg. If the coefficient of static friction between hand and rafter was 0.710, what was the least magnitude of the normal force on the rafter from each thumb or opposite fingers? (After suspending himself, Sincosky chinned himself on the rafter and then moved hand-over-hand along the rafter. If you do not think Sincosky's grip was remarkable, try to repeat his stunt.) Number Unitsarrow_forwardThe figure below shows a block weighing 22 N in contact with a vertical wall. Two forces are applied to the block, in addition to gravity, a horizontal force F of magnitude 60 N which pushes the block against a vertical wall and a force P of magnitude 62 N which pushes upward on the bottom of the block parallel to the wall. The coefficient of static friction between the wall and the block is 0.55 and the coefficient of kinetic friction between them is 0.38. Is the frictional force acting on the block static or kinetic, what is its magnitude and in what direction does it point? F Parrow_forward
arrow_back_ios
arrow_forward_ios