
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:In a physics lab, you attach a 0.200 kg air-track glider to the end of an ideal spring of negligible mass and start it
oscillating. The elapsed time from when the glider first moves through the equilibrium point to the second time if
moves through that point is 2.60 s. Find the spring's force constant (k).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Michelle pulls a slinky a distance of 13 inches from its equilibrium position and then releases it. The time for one oscillation is 2 seconds. Step 2 of 2 : Find the function in terms of t for the displacement of the slinky. Assume that the slinky is at its maximum displacement at t=0. Also assume that the function includes no horizontal or vertical shifts.arrow_forwardA 2 kg object is attached to a horizontal spring of force constant K = 5kN/m. The spring is stretched 10 cm from equilibrium and released. Find the following: The frequency The period The amplitude of the motion The maximum velocity The maximum acceleration When does the object first reach its equilibrium position? What is its acceleration at this time?arrow_forwardA 2.38 kg ball is attached to an unknown spring and allowed to oscillate. The figure shows a graph of the ball's position x as a function of time t. What is the force constant of the spring?arrow_forward
- A horizontal spring attached to a wall has a force constant of 720 N/m. A block of mass 1.90 kg is attached to the spring and oscillates freely on a horizontal, frictionless surface as in the figure below. The initial goal of this problem is to find the velocity at the equilibrium point after the block is released. (a) What objects constitute the system, and through what forces do they interact? (b) What are the two points of interest? (c) Find the energy stored in the spring when the mass is stretched 6.40 cm from equilibrium and again when the mass passes through equilibrium after being released from rest. x = 6.40 _____ J x = 0 ______J (e) Substitute to obtain a numerical value. (f) What is the speed at the halfway point?arrow_forwardAnswer For G, H, and Iarrow_forwardWhen taking my pet turkey to the vet, the scale read a mass of 29 kg. The scale consists of a spring that has a force constant value of 36000 N/m. Part (a) What distance did the spring move when the pet turkey jumped onto the scale? d= m Part (b) Assuming that the spring behaves as a simple harmonic oscillator, what is the oscillation frequency of the spring when the pet turkey steps on the scale? f = Hzarrow_forward
- A simple harmonic oscillator consists of a 1.20 kg block attached to a spring. The block is ocillating back and forth along a straight line on a frictionless horizontal surface. A plot of the position of the block (in cm) as a function of time (in seconds) is shown below. What are (a) the spring constant of the spring and (b) the maximum speed and maximum acceleration of the block? (c) What is the velocity of the block at t = 1.50 s? 4. 3- 2- -2- -3- -4- -5+ 0.2 0.4 0.6 0.8 Position (cm)arrow_forwardA block attached to a spring, oscillates on a frictionless horizontal surface with a period of 0.45 s. The time needed by the block to move (for the first time) from position x = A to x = -A/2 is:arrow_forwardAn initially 'un-compressed' spring (x1=0) is observed to compress 0.4 m before stopping and reversing the 26 m/s horizontal velocity of a 100 kg mass. Determine the spring constant in N/mm.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON