Database System Concepts
7th Edition
ISBN: 9780078022159
Author: Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
in a graph G = (N,E,C), where N are nodes, E edges between nodes, and the weight of an edge e ∈ E is given by C(e), where C(e) > 1, for all e ∈ E. the heuristic h that counts the least amount of edges from an initial state to a goal state. now removing edges from the graph, while keeping the heuristic values unchanged. Is the heuristic still consistent?
SAVE
AI-Generated Solution
info
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
to generate a solution
Click the button to generate
a solution
a solution
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Similar questions
- Consider a graph with five nodes labeled A, B, C, D, and E. Let's say we have the following edges with their weights: A to B with weight 3 A to C with weight 1 B to C with weight 3 B to D with weight 1 C to E with weight 4 D to E with weight 2 a. Find the shortest path from A to E using Dijkstra's algorithm (Would anything change if B to C weight was changed from 3 to 4? To 1? What about 5?)arrow_forwardConsider a graph with five nodes labeled A, B, C, D, and E. Let's say we have the following edges with their weights: A to B with weight 3 A to C with weight 1 B to C with weight 2 B to D with weight 1 C to E with weight 4 D to E with weight 2 a. Find the shortest path from A to E using Dijkstra's algorithm b. Use Prim to find the MST c. Use Kruskal to find the MST d. What's the difference between Prim and Kruskal algorithms? Do they always have the same result? Why or why not.arrow_forwardPlease show written work with answer!! An independent set in a graph is a set of vertices no two of which are adjacent to each other. A clique is a complete subgraph of a given graph. This means that there is an edge between any two nodes in the subgraph. The maximal clique is the complete subgraph of a given graph which contains the maximum number of nodes. We know that independent set is a NP complete problem. Transform the independent set to max clique (in polynomial time) to show that Max Clique is also NParrow_forward
- True or False (If your answer to the question is "False", explain why, and provide correction when possible). (a) Let h(n) be the heuristics for the node n, h(m) be the heuristics for the node m, d(m,n) be the actual minimal cost from node m to n in a graph. A* satisfies the monotone restriction iff d(m,n) <= |h(n)-h(m)|. (b) If an A* heuristics is admissible then it satisfies the monotone restriction. (c) Best-first search guarantees optimality in its returned solution. (d) Least-cost-first search guarantees optimality in its returned solution. (e) If all edges are with unit cost, then Breadth-first search guarantees optimality in its returned solution.arrow_forwardplease answer both of the questions. 7. The Bellman-Ford algorithm for single-source shortest paths on a graph G(V,E) as discussed in class has a running time of O|V |3, where |V | is the number of vertices in the given graph. However, when the graph is sparse (i.e., |E| << |V |2), then this running time can be improved to O(|V ||E|). Describe how how this can be done.. 8. Let G(V,E) be an undirected graph such that each vertex has an even degree. Design an O(|V |+ |E|) time algorithm to direct the edges of G such that, for each vertex, the outdegree is equal to the indegree. Please give proper explanation and typed answer only.arrow_forwardConsider a directed graph G=(V,E) with n vertices, m edges, a starting vertex s∈V, real-valued edge lengths, and no negative cycles. Suppose you know that every shortest path in G from s to another vertex has at most k edges. How quickly can you solve the single-source shortest path problem? (Choose the strongest statement that is guaranteed to be true.) a) O(m+n) b) O(kn) c) O( km) d) O(mn)arrow_forward
- We know that if the heuristic function in A* is good enough, then A* can always find a shortest weighted path between two vertices, and is generally much faster than Dijkstra. Assume we are using a graph where a good heuristic function is well defined for A*, such that A* can always find the same shortest paths as Dijkstra. Briefly explain when you should choose Dijkstra over A* in this case.arrow_forwardLet G = (V, E) be an undirected graph and each edge e ∈ E is associated with a positive weight ℓ(e).For simplicity we assume weights are distinct. Is the following statement true or false? Let T be a minimum spanning tree for the graph with the original weight. Suppose we replace eachedge weight ℓ(e) with ℓ(e)^2, then T is still a minimum spanning tree.arrow_forwardPlease help with algorithm no coding neededarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Database System ConceptsComputer ScienceISBN:9780078022159Author:Abraham Silberschatz Professor, Henry F. Korth, S. SudarshanPublisher:McGraw-Hill EducationStarting Out with Python (4th Edition)Computer ScienceISBN:9780134444321Author:Tony GaddisPublisher:PEARSONDigital Fundamentals (11th Edition)Computer ScienceISBN:9780132737968Author:Thomas L. FloydPublisher:PEARSON
- C How to Program (8th Edition)Computer ScienceISBN:9780133976892Author:Paul J. Deitel, Harvey DeitelPublisher:PEARSONDatabase Systems: Design, Implementation, & Manag...Computer ScienceISBN:9781337627900Author:Carlos Coronel, Steven MorrisPublisher:Cengage LearningProgrammable Logic ControllersComputer ScienceISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
Database System Concepts
Computer Science
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:9780134444321
Author:Tony Gaddis
Publisher:PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:9780132737968
Author:Thomas L. Floyd
Publisher:PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:9780133976892
Author:Paul J. Deitel, Harvey Deitel
Publisher:PEARSON
Database Systems: Design, Implementation, & Manag...
Computer Science
ISBN:9781337627900
Author:Carlos Coronel, Steven Morris
Publisher:Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education