Question
Consider a directed graph G=(V,E) with n vertices, m edges, a starting vertex s∈V, real-valued edge lengths, and no negative cycles. Suppose you know that every shortest path in G from s to another vertex has at most k edges. How quickly can you solve the single-source shortest path problem? (Choose the strongest statement that is guaranteed to be true.) a) O(m+n) b) O(kn) c) O( km) d) O(mn)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, data-structures-and-algorithms and related others by exploring similar questions and additional content below.Similar questions
- Given an undirected, weighted graph G(V, E) with n vertices and m edges, design an (O(m + n)) algorithm to compute a graph G1 (V, E1 ) on the same set of vertices, where E1 subset of E and E1 contains the k edges with the smallest edge weights , where k < m.arrow_forwardConsider eight points on the Cartesian two-dimensional x-y plane. a g C For each pair of vertices u and v, the weight of edge uv is the Euclidean (Pythagorean) distance between those two points. For example, dist(a, h) : V4? + 1? = /17 and dist(a, b) = v2? + 0² = 2. Because many pairs of points have identical distances (e.g. dist(h, c) V5), the above diagram has more than one minimum-weight spanning tree. dist(h, b) = dist(h, f) Determine the total number of minimum-weight spanning trees that exist in the above diagram. Clearly justify your answer.arrow_forwardRecall the Floyd-Warshall algorithm. For this problem, we are interested in the number of paths between each pair of vertices i and j in a directed acyclic graph. Suppose we know the number of paths between each pair of vertices where we restrict the intermediate vertices to be chosen from 1, 2, . . . , k − 1, show how we can extend the result to allow vertex k as an intermediate vertex as well. To conclude what would its complexity be?arrow_forward
- Consider a graph with five nodes labeled A, B, C, D, and E. Let's say we have the following edges with their weights: A to B with weight 3 A to C with weight 1 B to C with weight 2 B to D with weight 1 C to E with weight 4 D to E with weight 2 a. Find the shortest path from A to E using Dijkstra's algorithm b. Use Prim to find the MST c. Use Kruskal to find the MST d. What's the difference between Prim and Kruskal algorithms? Do they always have the same result? Why or why not.arrow_forwardplease answer both of the questions. 7. The Bellman-Ford algorithm for single-source shortest paths on a graph G(V,E) as discussed in class has a running time of O|V |3, where |V | is the number of vertices in the given graph. However, when the graph is sparse (i.e., |E| << |V |2), then this running time can be improved to O(|V ||E|). Describe how how this can be done.. 8. Let G(V,E) be an undirected graph such that each vertex has an even degree. Design an O(|V |+ |E|) time algorithm to direct the edges of G such that, for each vertex, the outdegree is equal to the indegree. Please give proper explanation and typed answer only.arrow_forwardSuppose you are given a directed graph G on n vertices, each of which is assigned a colour. (In this problem, both endpoints of an edge can have the same colour.) Give an efficient algorithm to find the length of the longest monochromatic directed walk in G. (In a walk we can revisit vertices and recross edges, whereas in a path we cannot.) Your algorithm should return "undefined" if there is a directed cycle whose vertices are all the same colour.arrow_forward
- Consider a graph G that is comprised only of non-negative weight edges such that (u, v) € E, w(u, w) > 0. Is it possible for Bellman-Ford and Dijkstra's algorithm to produce different shortest path trees despite always producing the same shortest-path weights? Justify your answer.arrow_forwardConsider a directed graph G=(V,E) with n vertices, m edges, a starting vertex s∈V, real-valued edge lengths, and no negative cycles. Suppose you know that every shortest path in G from s to another vertex has at most k edges. How quickly can you solve the single-source shortest path problem? (Choose the strongest statement that is guaranteed to be true.) a) O(m+n) b) O(kn) c) O( km) d) O(mn)arrow_forward3. Given a Directed Acyclic Graph (DAG) G = (V,E), design an algorithm to determine whether there exists a path that can visit every node. The algorithm should have time complexity of O(|E|+ |V]). Prove why your algorithm is correct.arrow_forward
- Please help with algorithm no coding neededarrow_forwardLet G be a graph with V vertices and E edges. One can implement Kruskal's Algorithm to run in O(E log V) time, and Prim's Algorithm to run in O(E + V log V) time. If G is a dense graph with an extremely large number of vertices, determine which algorithm would output the minimum-weight spanning tree more quickly. Clearly justify your answer.arrow_forward
arrow_back_ios
arrow_forward_ios