In a closed cycle gas turbine there is two stage compressor and two - stage turbine. All the components are mounted on the same shaft. The pressure and temperature of air at inlet to the first stage compressor are 1.5 bar and 20 °C respectively . The maximum cycle pressure and temperature are limited to 750 ° C and 6 bar. A perfect intercooling and reheating are used between the compressors and the turbines. A regenerator whose effectiveness is 0.7 was employed. Assuming the compressors and turbines efficiencies as 0.82 , calculate : a . Thermal efficiency of the cycle. b. Mass of working fluid for a power output of 350 kW. Assume the working fluid is air has c = 1.005 kJ / kg K , y = 1.
In a closed cycle gas turbine there is two stage compressor and two - stage turbine. All the components are mounted on the same shaft. The pressure and temperature of air at inlet to the first stage compressor are 1.5 bar and 20 °C respectively . The maximum cycle pressure and temperature are limited to 750 ° C and 6 bar. A perfect intercooling and reheating are used between the compressors and the turbines. A regenerator whose effectiveness is 0.7 was employed. Assuming the compressors and turbines efficiencies as 0.82 , calculate : a . Thermal efficiency of the cycle. b. Mass of working fluid for a power output of 350 kW. Assume the working fluid is air has c = 1.005 kJ / kg K , y = 1.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
In a closed cycle gas turbine there is two stage compressor and two - stage turbine. All the components are mounted on the same shaft. The pressure and temperature of air at inlet to the first stage compressor are 1.5 bar and 20 °C respectively . The maximum cycle pressure and temperature are limited to 750 ° C and 6 bar. A perfect intercooling and reheating are used between the compressors and the turbines. A regenerator whose effectiveness is 0.7 was employed. Assuming the compressors and turbines efficiencies as 0.82 , calculate : a . Thermal efficiency of the cycle. b. Mass of working fluid for a power output of 350 kW. Assume the working fluid is air has c = 1.005 kJ / kg K , y = 1.4
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 7 steps with 7 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY