A steady-flow system operating on the ideal Ericsson cycle can achieve the Carnot efficiency. One of the salient features of this cycle is the isothermal expansion through a heated turbine, as shown in Fig. a. Heat is added to the turbine such that the outlet temperature is equal to the inlet temperature, i.e. T₁=T₂, and the overall pressure ratio for this process is rₚ=P₁/P₂. However, an isothermal expansion through a heated turbine is very difficult to achieve in practical engineering applications. An alternate approach is two use a multi-stage expansion process with reheating. In this approach, the gas expansion process is carried out in multiple stages with reheating in between each stage. Consider the two-stage turbine expansion with reheating shown in Fig. b. The gas enters the first stage of the turbine at state A1, is expanded isentropically to an intermediate pressure Pₐ₂, is reheated at constant pressure to state B1, and is expanded in the second stage isentropically to the final pressure Pᵦ₂. The overall pressure ratio remains Pₐ₁/Pᵦ₂=rₚ. In this concept, the work output is minimized if the gas is reheated to the initial temperature Tᵦ₁=Tₐ₁, and the pressure ratio is equal across each turbine stage such that Pₐ₁/Pₐ₂=Pᵦ₁/Pᵦ₂=√rₚ. For the same inlet temperature T₁=Tₐ₁, the same mass flow rate m˙, the same overall pressure ratio rₚ, and an ideal monoatomic gas as the working fluid for both scenarios.  Show that for the conditions given, the ratio of the total power output of the ideal two-stage expansion to the total power output of the ideal isothermal expansion is given as: (Picture 2)

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
100%

A steady-flow system operating on the ideal Ericsson cycle can achieve the Carnot efficiency. One of the salient features of this cycle is the isothermal expansion through a heated turbine, as shown in Fig. a. Heat is added to the turbine such that the outlet temperature is equal to the inlet temperature, i.e. T₁=T₂, and the overall pressure ratio for this process is rₚ=P₁/P₂.

However, an isothermal expansion through a heated turbine is very difficult to achieve in practical engineering applications. An alternate approach is two use a multi-stage expansion process with reheating. In this approach, the gas expansion process is carried out in multiple stages with reheating in between each stage. Consider the two-stage turbine expansion with reheating shown in Fig. b. The gas enters the first stage of the turbine at state A1, is expanded isentropically to an intermediate pressure Pₐ₂, is reheated at constant pressure to state B1, and is expanded in the second stage isentropically to the final pressure Pᵦ₂. The overall pressure ratio remains Pₐ₁/Pᵦ₂=rₚ. In this concept, the work output is minimized if the gas is reheated to the initial temperature Tᵦ₁=Tₐ₁, and the pressure ratio is equal across each turbine stage such that Pₐ₁/Pₐ₂=Pᵦ₁/Pᵦ₂=√rₚ.

For the same inlet temperature T₁=Tₐ₁, the same mass flow rate m˙, the same overall pressure ratio rₚ, and an ideal monoatomic gas as the working fluid for both scenarios. 

Show that for the conditions given, the ratio of the total power output of the ideal two-stage expansion to the total power output of the ideal isothermal expansion is given as: (Picture 2)

Qreheat
Reheater
士。
- PA2, TA2
PB1, TB1
PB2, TB2
P2, T2 = T1
PA1, TA1"
P1, T1
WT.B
WTA
Turbine B
Turbine
Turbine A
T=const.
Qin
b) Two-stage turbine expansion with reheating
a) Isothermal turbine
Transcribed Image Text:Qreheat Reheater 士。 - PA2, TA2 PB1, TB1 PB2, TB2 P2, T2 = T1 PA1, TA1" P1, T1 WT.B WTA Turbine B Turbine Turbine A T=const. Qin b) Two-stage turbine expansion with reheating a) Isothermal turbine
1/5
WTA + W T,B
WT!
()")
1.
InTp
r.
P
Transcribed Image Text:1/5 WTA + W T,B WT! ()") 1. InTp r. P
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY