In a 300-rough incline, a 2.15 kg block is initially at rest beside a spring that is compressed by 42 cm as shown in the figure below. The spring has a spring constant of 180 N/m and the coefficient of sliding friction between the incline and the block is 0.32. When the spring is released, (a) how far up the incline (with respect to its initial position) will the block slide before sliding back? (b) What is the speed of the block at the instant it is 0.43 m from its initial position? 30°

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
In a 300-rough incline, a 2.15 kg block is initially at rest beside a spring that is compressed by 42 cm as shown in the figure below. The spring has a spring constant of 180 N/m and the coefficient
of sliding friction between the incline and the block is 0.32. When the spring is released, (a) how far up the incline (with respect to its initial position) will the block slide before sliding back? (b)
What is the speed of the block at the instant it is 0.43 m from its initial position?
wm
300
Transcribed Image Text:In a 300-rough incline, a 2.15 kg block is initially at rest beside a spring that is compressed by 42 cm as shown in the figure below. The spring has a spring constant of 180 N/m and the coefficient of sliding friction between the incline and the block is 0.32. When the spring is released, (a) how far up the incline (with respect to its initial position) will the block slide before sliding back? (b) What is the speed of the block at the instant it is 0.43 m from its initial position? wm 300
Expert Solution
steps

Step by step

Solved in 3 steps with 12 images

Blurred answer
Knowledge Booster
Design of Mechanical Springs
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY