College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Imagine that two parallel plates are charged to achieve a voltage difference Vo between the plates. They have area A and spacing d. The plates are then electrically isolated so that no charge can be added or taken away. A good conductor of thickness d/2 is placed in between the two plates, as shown. Given that the charge on the plates cannot change, what is the electric field in the regions between the plates, but above and below the conductor? (If you are stuck, Gauss’s Law may help.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a thin plastic rod bent into an arc of radius R and angle a. The rod carries a uniformly distributed negative charge -Q. (Note: the diagram may have the incorrect sign.) y α R -Q X What is the x component of the electric field at the origin? (Enter your responses in terms of the symbolic quantities mentioned in the problem. To make things easier, just write the letter "a" for the angle a, and use the Coulomb constant k rather than the unwieldy 1/4no.) Ex = k*Q*sin(a)/(a*R^2) Computer's answer now shown above. Tries 0/6 What is the y component of the electric field at the origin? Ey = k*Q*(1-cos(a))/(a*R^2) Computer's answer now shown above. Tries 0/6 Follow the steps outlined in class and in the textbook: 1. Use a diagram to explain how you'll cut up the charge distribution, and draw the AE contributed by a representative piece of charge at a given location. 2. Express algebraically the contribution each piece makes to each vector component of the electric field. Indicate…arrow_forwardWe have two uniformly charged parallel plates, as shown. Their widths are much larger than the separation between the plates. The magnitudes of the charges on each are equal. a, b, and c indicate the regions just above, in between, and just below the plates, respectively. Now let's suppose that the plates are squares with side length 1 cm, and that they have equal and opposite charges of magnitude 3.7 μC. What is the magnitude of the electric field in region b?arrow_forwardA small block of mass m and charge Q is placed on an insulated, frictionless, inclined plane of angle as in the figure below. An electric field is applied parallel to the incline. Q m E = (a) Find an expression for the magnitude of the electric field that enables the block to remain at rest. (Use any variable or symbol stated above along with the following as necessary: g for the acceleration due gravity. Note that the charge of Q is unknown.) i (b) If m = 5.41 g, Q = -7.49 μC, and 0 = 26.3°, determine the magnitude and the direction of the electric field that enables the block to remain at rest on the incline. magnitude N/C direction ---Select---arrow_forward
- An infinitely large horizontal plane carries a uniform surface charge density = -0.368 nC/m². What is the electric field strength in the region above the plane [Select] ? A proton is traveling in this field with initial speed vo = 1.00 × 105 m/s at 0 = 45° angle with respect to the plane, as shown in the figure below Use the coordinate system in the figure and neglect the effect of gravity. How high can the proton go [Select] ? If the zero potential is at the origin level, i.e., y = 0 level, what is the potential energy [Select] and kinetic energy [Select] of the proton when it is at a height of 31 = 0.500 m? What is the proton's kinetic energy at height y2 = 2.00 m [Select] y Voarrow_forwardA small block of mass m and charge Q is placed on an insulated, frictionless, inclined plane of angle e as in the figure below. An electric field is applied parallel to the incline. (a) Find an expression for the magnitude of the electric field that enables the block to remain at rest. (Use any variable or symbol stated above along with the following as necessary: g for the acceleration due gravity. Note that the charge of Q is unknown.) E = (b) If m = 5.81 g, Q = -7.14 µC, and e = 24.5°, determine the magnitude and the direction of the electric field that enables the block to remain at rest on the incline. magnitude N/C direction --Select--arrow_forwardAn electric field of magnitude 464 V/m passing through a flat square plate of length 0.644 m on a side makes an angle of 63.6 degrees with the surface of plate. Determine the electric flux passing through the surface of the square plate. (Hint: the angle given here is the angle that the field makes with the surface, not with the area vector. In what direction does the area vector of a surface point relative to that surface?)arrow_forward
- An electron is projected with an initial speed v0 = 1.70×106 m/s into the uniform field between the parallel plates in (Figure 1). Assume that the field between the plates is uniform and directed vertically downward, and that the field outside the plates is zero. The electron enters the field at a point midway between the plates. If the electron just misses the upper plate as it emerges from the field, find the magnitude of the electric field. Express your answer in newtons per coulomb. Suppose that in the figure the electron is replaced by a proton with the same initial speed v0v0. Would the proton hit one of the plates? What would be the direction of proton's displacement? displacement is upward displacement is downwardarrow_forwardPositive charge is distributed with a uniform density λ along the positive x-axis from r to ∞, along the positive y-axis from r to ∞, and along a 90° arc of a circle of radius r, as shown below. What is the electric field at O? (Use the following as necessary: λ, r, and ε0.) E = _____ i + ______ j + ______ karrow_forwardA negatively charged particle is moving at an angle with a component of velocity in the +y-direction when it enters a region with a uniform electric field pointing in the +y-direction. Describe (or sketch) the motion of the charge after entering the electric field. How do you know this is what will happen (what direction is the acceleration)?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON