A small sphere (emissivity =0.503 radius=r1) is located at the center of a spherical abestos shell ( thickness =1.74 cm, outer radius= r2; thermal conductivity of abestos is 0.090 J/ (sm c degrees) The thickness of the shell is small compared to the inner and outer radii of the shell. The temperature of the small sphere is 695 degrees Celsius while the temperature of the inner surface of the shell is 352 degrees Celsius, both temperatures remaining constant. Assuming that r2/r1 =8.75 and ignoring any air inside the shell, find the temperature in degrees Celsius of the outer surface of the shell.
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 1 images
I'm sorry instead of 695 it was 605.
I'm sorry instead of 695 it was 605.
- A room is to be heated with a sphere containing 1 metric tonne of hot water via radiation of energy (its closed system and convection is negligible). The heat loss from the room is 2kW. What temperature (in K) would the sphere of water need to maintain for steady state conditions in the room? Assume perfect blackbody.arrow_forwardA reducing elbow is used to deflect water flow at a rate of 14 kg/s in a horizontal pipe upward 30° while accelerating it. The elbow discharges water into the atmosphere. The cross-sectional area of the elbow is 113 cm2 at the inlet and 7 cm2 at the outlet. The elevation difference between the centers of the outlet and the inlet is 30 cm. The weight of the elbow and the water in it is considered to be negligible. Determine (a) the gage pressure at the center of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place.arrow_forwardA long, horizontal, cylindrical steel reactor, 1 m in diameter, has a surface temperature of 300ºC. The emissivity of the steel is 0.6, and the heat transfer coefficient for natural convection is 5 W m−2 K−1 . Heat is lost by convection to the air at 15ºC, and also by radiation to the surroundings, which can be considered to be a black body at 15ºC. a) Calculate the total heat loss per metre length of the reactor, and the proportions lost by convection and radiation b) The reactor is then insulated with a thin layer of insulation material to reduce the total heat loss to one-tenth of its original value. This causes the surface temperature of the steel to rise to 400ºC. The thermal conductivity of the insulation is 0.01 W m−1 K−1 , and its surface emissivity is 0.2. Show that the resulting surface temperature of the insulation is about 89ºC, and calculate the thickness of insulation required, stating any assumptions made. Specifically need help with part barrow_forward
- An opaque surface which is insulated at the back side has a total, hemispherical absorptivity a=0.8 for solar radiation and a total, hemispherical emissivity of e=0.2. A solar radiation flux of 800 W/m2 is incident on this surface. The surface is exposed to the ambient air at T 300 K and convective heat transfer coefficient is h=15 W/m2 K. Neglect the sky radiation. • Sketch the heat fluxes received and dissipated by this surface • Estimate the equilibrium temperature of the surface (assume the surface temperature is higher than the ambient air temperature). 1.= 300 K, h-15 W/m*K 800 W/m? a-0.8 , e-0.2arrow_forwardPlease don't provide handwritten solutionarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY