MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
If the regression line is not a "good fit" what would be better to use to approximate a response variable?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- please pay attention. you guys have been getting all my stats questions wrong.arrow_forwardThe table below gives the number of hours spent unsupervised each day as well as the overall grade averages for seven randomly selected middle school students. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the overall grade average for a middle school student based on the number of hours spent unsupervised each day. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Unsupervised 1 2 2.5 3.5 4 5.5 6 Overall Grades 99 81 73 72 67 65 63 Table Step 1 of 6 : Find the estimated slope. Round your answer to three decimalarrow_forwardThe accompanying data represent the weights of various domestic cars and their gas mileages in the city. The linear correlation coefficient between the weight of a car and its miles per gallon in the city is r= - 0.984. The least-squares regression line treating weight as the explanatory variable and miles per gallon as the response variable is y = - 0.0066x + 43.3954. Complete parts (a) and (b) below. Click the icon to view the data table. (a) What proportion of the variability in miles per gallon is explained by the relation between weight of the car and miles per gallon? Data Table The proportion of the variability in miles per gallon explained by the relation between weight of the car and miles per gallon is %. (Round to one decimal place as needed.) (b) Interpret the coefficient of determination. Full data set % of the variance in is by the linear model. Miles per Miles per Weight (pounds), x Weight (pounds), x Car Car (Round to one decimal place as needed.) Gallon, y Gallon, y…arrow_forward
- The table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, y = bo + bjx, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 47 49 50 51 58 Bone Density 360 353 336 333 310 Table Copy Data Step 3 of 6: Find the estimated value of y when x = 58. Round your answer to three decimal places.arrow_forwardThe table below gives the number of hours spent unsupervised each day as well as the overall grade averages for five randomly selected middle school students. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting the overall grade average for a middle school student based on the number of hours spent unsupervised each day. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Hours Unsupervised 0 1 3 4 5 Overall Grades 95 92 85 81 62 Table Step 1 of 6 : Find the estimated slope. Round your answer to three decimal places.arrow_forwardYou are interested in whether there are gender differences in voting behaviour using the European Social Survey. Youestimate a regression model with being a woman as the single explanatory variable. Clearly write down the regression model.arrow_forward
- Use the p-value criterion to find the best model for predicting the number of points scored per game by football teams using the accompanying National Football League Data. Does the model make logical sense? Click the icon to view the National Football Leaque Data. Determine the best multiple regression model. Let X, represent Rushing Yards, let X, represent Passing Yards, let X, represent Penalties, let X, represent Interceptions, and let Xg represent Fumbles. Enter the terms of the equation so that the Xy-values are in ascending numeral order by base. Select the correct choice below and fill in the answer boxes within your choice. (Type an integer or decimal rounded to three decimal places as needed.) O A. Points/Game = O B. Points/Game = Oc. Points/Game = OD. Points/Game = + ( DX Points/Game = O E.arrow_forwardUse the following information to answer the next question:Fred’s Frozen Creations has been contracted to train Utah’s synchronized ice sculpting team. They have identified two different independent variables (ice sculpting hours and number of ice blocks used in training) in two different equations to evaluate the cost of training. The results of the two regressions are as follows: (PLEASE REFER TO ATTACHED IMAGE) 20.) Assume Fred’s Frozen Creations chooses to use the number of ice blocks to estimate the cost of training. Construct a 90% confidence interval for the cost of training when the number of ice blocks used is estimated at 1,300. Assume 1,300 ice blocks is within the relevant range. (Round all calculations to the nearest dollar) a. ($223,240, $371,338)b. ($211,035, $383,543)c. ($216,475, $364,573)d. ($258,475, $336,103)e. ($207,844, $386,734)f. ($208,275, $386,303)g. ($297,027, $297,551)h. None of the above.arrow_forwardAs a marketing manager for TriFood, you want to determine whether store Sales (# sold in one month) of TriPower bars are related to price (in cents) of TriPower bars and in-store promotional expenditures (in dollars) for TriPower bars. You conduct a multiple regression analysis with store Sales (Y) as the response variable, and Price (X1) and Promotion (X2) as explanatory variables. Use the pictured Excel regression output below to answer the questions. a) Interpret the value for R square. Interpret the estimated coefficient for price. b) State the hypotheses for assessing the statistical significance of the overall regression equation. Does the model overall fit the data (yes or no?) f) An external consultant to TriFoods believes that for every $1 increase in promotional expenditures, sales will increase by 4.7 units. Test the consultant's hypothesis at a 5% significance level using both approaches (tcalc vs tcrit and p-value vs a).arrow_forward
- To determine the effectiveness of group study sessions, a college instructor gathers data on hours of attendance and exam scores for students in the class. Which variable, hours of attendance or exam scores, would be the response variable for a least-squares regression equation? is it hours of attendance or exam scores?arrow_forwardQ2) Find the regression line for the following data, then predict the value of y when x is 5: X 0 2 4 6 8 y 2 4 3 8 10arrow_forwardThe table below gives the age and bone density for five randomly selected women. Using this data, consider the equation of the regression line, yˆ=b0+b1x, for predicting a woman's bone density based on her age. Keep in mind, the correlation coefficient may or may not be statistically significant for the data given. Remember, in practice, it would not be appropriate to use the regression line to make a prediction if the correlation coefficient is not statistically significant. Age 47 48 56 60 67 Bone Density 359 350 334 314 313 Find the estimated slope. Round your answer to three decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman