Question
If the motor exerts a constant force of 300 N on the cable, determine the speed of the 19-kg crate when it travels s = 10 m up the plane, starting from rest. The coefficient of kinetic friction between the crate and the plane is μk = 0.3.
(Figure 1)
Express your answer to three significant figures and include the appropriate units.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Similar questions
- A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.860 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.350 and he exerts a constant horizontal force of 291 N on the crate (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface.magnitude_____N direction (b) Find the net work done on the crate while it is on the rough surface. _____J(c) Find the speed of the crate when it reaches the end of the rough surface. ______m/sarrow_forwardConsider the track shown in the figure below. Section AB is a quadrant of a circle of radius r = 2.00 m and is frictionless. From B to C is a horizontal section 3.0 m long with a coefficient of kinetic friction μk = 0.250. The section CD under the spring is frictionless. A block of mass m = 1.00 kg is released from rest at A. After sliding on the track, the block compresses 0.200 m the spring. Determine (using conservation of energy): (a) the speed of the block at point B. (b) the thermal energy (internal energy) produced when the block slips from B to C. (c) the velocity of the block at point C. (d) the stiffness constant k for the spring.arrow_forwardA 1 kg Box slides down an inclined plane. It has an incline of 1.25664 radians and coefficient of kinetic friction of 0.44. What is the final speed of the Box if it started at rest and the change in height is 4 m? V =arrow_forward
- In the figure, the 200-lb crate is being pulled up the slope by the motor M. If the velocity of the point P is 2s³ ft/s (where s is the displacement of the crate), and the coefficient of kinetic friction between the crate and the slope is u = 0.2, what will the towing force applied by M be when the box has moved 10 ft up the slope?arrow_forwardAs shown in the figure below, a box of mass m = 30.0 kg is sliding along a horizontal frictionless surface at a speed v₁ = 4.55 m/s when it encounters a ramp inclined at an angle of 0 = 28.0⁰. frictionless surface The coefficient of kinetic friction between the ramp and the box is μ = 0.0704 and the box slides a distance d up the ramp before coming momentarily to rest. (a) Determine the distance (in m) the box slides up the ramp before coming momentarily to rest. Ο OW₁ = -APE Wg OW, m (b) Determine which of the following statements is most correct about the box traveling up the ramp and coming momentarily to rest. OW.. = AKE Net = W Net ΔΕ = W cons + W noncons ΔΕ = ΔΚΕ + ΔΡΕ Ο O all of these rough surface TTO nonconsarrow_forwardIn the figure the pulley has negligible mass, and both it and the inclined plane are frictionless. Block A has a mass of 1.3 kg, block B has a mass of 2.2 kg, and angle 0 is 32°. If the blocks are released from rest with the connecting cord taut, what is their total kinetic energy when block B has fallen 28 cm? Number Units Barrow_forward
- A man pushing a crate of mass m = 92.0 kg at a speed of v = 0.875 m/s encounters a rough horizontal surface of length ℓ = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.354 and he exerts a constant horizontal force of 292 N on the crate. A man pushes a crate labeled m, which moves with a velocity vector v to the right, on a horizontal surface. The horizontal surface is textured from the right edge of the crate to a horizontal distance ℓ from the right edge of the crate. (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude N direction (b) Find the net work done on the crate while it is on the rough surface. J(c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardAn online video daredevil is filming a scene where he swings across a river on a vine. The safety crew must use a vine with enough strength so that it doesn't break while swinging. The daredevil's mass is 82.0 kg, the vine is 11.0 m long, and the speed of the daredevil at the bottom of the swing has been determined to be 7.60 m/s. What is the minimum tension force (in N) the vine must be able to support without breaking?arrow_forwardA movie stunt performer is filming a scene where he swings across a river on a vine. The safety crew must use a vine with enough strength so that it doesn't break while swinging. The stunt performer's mass is 90.0 kg, the vine is 11.0 m long, and the speed of the stunt performer at the bottom of the swing has been determined to be 7.40 m/s. What is the minimum tension force (in N) the vine must be able to support without breaking? Aa N Need Help? Read Itarrow_forward
arrow_back_ios
arrow_forward_ios