College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
If the magnetic field steadily decreases from B to zero during a time interval t, what is the magnitude I of the induced current? Express your answer in terms of x, y, B, t, and the resistance R of the wire.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Derive an expression for the current in a system like shown, under the following conditions. The resistance between the rails is R , the rails and the moving rod are identical in cross section A and have the same resistivity ρ .The distance between the rails is l, and the rod moves at constant speed v perpendicular to the uniform field B . At time zero, the moving rod is next to the resistance R .arrow_forwardA conducting ring of electrical resistance R = 4.0 [2] and radius r = 2.0 [m] is inside an external magnetic field B=6t (T), where t is measured in seconds and whose direction is towards the inside of the page as shown in the figure. What is the magnitude of the induced current for t>0? Express your answer in Amperes and with 2 decimal places of precision. X X X X X X X X X ххххх X X ringarrow_forwardConsider two thin wires of length w with a uniform current I as shown in figure below. Determine the magnetic flux density B(F) at the point P(w,w,0). Show the direction of the magnetic flux density at the given point. W I Z W P(w,w,0) yarrow_forward
- A straight conductor of length L moves with an acceleration A =0.1 ms-2 at right angles to a magnetic field of uniform strength B=10.2 T. Calculate L, considering that the e.m.f., ? = BLv, between the ends of the conductor increased from 0 to 5 V during the first 20 s after the beginning of motion.arrow_forwardA uniform externally applied magnetic field is in the +z direction (B = Bk, with B positive) and B is increasing with time. A loop of wire in the x-y plane is in this field (the magnetic field is perpendicular to this loop); it has a total resistance R independent of the radius r of the loop. Which of the following statements is true? The magnitude of the current is proportional to the radius of the loop: I=αr, α a constant. The current at any time is proportional to the magnitude of the magnetic field at that time. The current induced in the wire will produce a magnetic field in the –z direction. None of a-c More than one of a-carrow_forwardFor a physics lab assignment, a student needs to create a solenoid using copper wire with diameter d = 0.500 mm. The resistance of the solenoid needs to be 3.50 and the magnetic field of the solenoid with a current of 2.90 A should be 5.90 × 10-² T. Assume the resistance does not change significantly with temperature, and the radius of the solenoid is 1.00 cm. (Use p 1.70 x 10-8.m for the resistivity of copper.) (a) How many turns of wire does the student need? turns (b) Determine the required length (in cm) of the solenoid. cmarrow_forward
- Three long parallel wires, lie perpendicular to this page, as shown in the figure, and carry the same current intensity I = 2 A. The current along the wire A is going into the page. The current along the wire B is also going into the page. The current along the wire C is coming out of the page. Knowing that d = 1 cm, find the direction and magnitude of the net force per unit length acting on the wire B. (Force per unit length just means divide the force by the length.) 2d d A Вarrow_forwardGiven: B = 5 * 10-5 T ẑ; σ = 4 (Ohm-meters)-1 (conductivity) a) Assume that seawater is moving at a constant velocity v = v0 ŷ and that the Earth’s magnetic field is along the ẑ-direction. Calculate the electric current density J produced by the magnetic force. Hint: first compute the force per unit charge, F/q, and then use the relationship J = σ(F/q). b) Derive the equation of motion of a cylindrical differential volume element of base area δA and height δh parallelto the direction of J. Assume that seawater has a known volumetric mass density ρ. Show that this equation implies that the velocity satisfies the following differential equation:dvy/dt = vy/τwhere τ is a constant that you should write in terms of B, σ, and ρ.arrow_forwardConsider the RL direct current circuit shown. The circuit contains R = 4.0 Ω, L = 10 mH, & ε = 12 V. The circuit is charging. (a) Determine the time constant for the circuit? (b) What is the maximum current in the circuit? (c) What is the current one time constant (t = τ )? (d) When the current is 0.5 A, what is the strength of the magnetic field in the solenoid, with n = N/ℓ = 319x103 turns/m. ( T×m/A)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON