College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Ice at 0.0°C is mixed with 6.30 × 102 mL of water at 25.0°C. How much ice must melt to lower the water temperature to 0.0°C? The specific heat capacity of water is 4.186 J/(g·K). Latent heat of fusion for water is 333.7 J/g.
SAVE
AI-Generated Solution
info
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
to generate a solution
Click the button to generate
a solution
a solution
Knowledge Booster
Similar questions
- One way to keep the contents of a garage from becoming too cold on a night when a severe subfreezing temperature is forecast is to put a tub of water in the garage. If the mass of the water is 122 kg and its initial temperature is 24.2°C, how much energy must the water transfer to its surroundings in order to freeze completely? The specific heat of water is 4186 J/kg·K, and the latent heat of fusion is 333 kJ/kg.arrow_forwardA cooking pot has a copper bottom of area 4.00x 10-2 m2 and thickness 1.00 cm. if the pot is set on a 521 °F stove top and filled with ice water, what is the melting rate of the ice? The thermal conductivity of copper is 3.90x 102 J/(s m K) and the latent heat of fusion of water is 3.35x 105 J/kg.(answer must be in kg/s) Estimate the lowest environment temperature that a person, who has skin temperature 34.0 °C, total skin area 1.53 m², emissivity 0.800, and metabolic energy production 157 J/s, can stand naked without a significant drop of body temperature. (answer in celicus)arrow_forwardYou mix mI = 1.2 kg of ice at TI = -19°C with mW = 3.4 kg of water at TW = 86°C in an insulated container. The specific heats of ice and water are cI = 2.10×103 J/(kg⋅°C) and cW = 4.19×103 J/(kg⋅°C), respectively, and the latent heat of fusion for water is Lf = 3.34 × 105 J/kg. Enter an expression for the final equilibrium temperature of the mixture in terms of the defined quantities. Solve for Tf Please give all the detailed workarrow_forward
- You mix mI = 1.2 kg of ice at TI = -19°C with mW = 3.4 kg of water at TW = 86°C in an insulated container. The specific heats of ice and water are cI = 2.10×103 J/(kg⋅°C) and cW = 4.19×103 J/(kg⋅°C), respectively, and the latent heat of fusion for water is Lf = 3.34 × 105 J/kg. Enter an expression for the final equilibrium temperature of the mixture in terms of the defined quantities. Hints : Heat problems involving phase changes generally need to be dealt with step by step, taking into account that when there is no temperature difference, there will be no heat transfer. In the present case, the first step might be to consider whether the ice warms to 0°C before or after the water cools to 0°C.-In an isolated system all the heat lost by any components of the system is gained by the system’s other components.-Use the relation among heat, mass, specific heat, and temperature change.-First, the ice reaches 0°C. Then it starts melting while the warmer water continues cooling. Now consider…arrow_forwardIn an experiment, a 125-g sample of an unknown metal is heated to 98.0°C. The metal is then placed into a 25.0-g aluminum calorimeter cup (with c = 900 J/kg.°C) containing 200-g of water at 20.0°C. When equilibrium is reached, the final temperature is 28.2°C. What is the specific heat of the unknown metal? %3D 637.2 J/kg-°C 673.7 J/kg.°C 679.9 J/kg.°C 788.5 J/kg.°C А. D. В. 808.0 J/kg.°C Е. С. 775.2 J/kg.°C F.arrow_forwardAn insulated Thermos contains 150 cm³ of hot coffee at 90.0°C. You put in a 11.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg-K. The latent heat of fusion is 333 kJ/kg. The density of water is 1.00 g/cm³. Number i Unitsarrow_forward
- A sealed container holding 0.492 kg of liquid nitrogen at its boiling point of 77.3 K is placed in a large room at 23.2°C. Energy is transferred from the room to the nitrogen as the liquid nitrogen boils into a gas and then warms to the room's temperature. Liquid nitrogen has a latent heat of vaporization of 2.01 ✕ 105 J/kg. The specific heat of N2 gas at constant pressure is cN2 = 1.04 ✕ 103 J/kg. K (a) Assuming the room's temperature remains essentially unchanged at 23.2°C, calculate the energy (in J) transferred from the room to the nitrogen. (b) Estimate the change in entropy of the room (in J/K).arrow_forwardSuppose you place 0.265 kg of 24.5°C water in a 0.45 kg aluminum pan with a temperature of 147.5°C, and 0.0125 kg of the water evaporates immediately, leaving the remainder to come to a common temperature with the pan. What would be the final temperature, in degrees Celsius, of the pan and water? The heat of vaporization of water is Lv = 2256 kJ/kg. You may neglect the effects of the surroundings and the heat required to raise the temperature of the vaporized water. Te =arrow_forwardThere is a .32 kg block of silver that is 21 °C. If silver's melting point is 961°C, how much thermal energy would a scientist need to melt this block of silver? (Hf = 111 kJ/kg). Hf is the heat of fusion of silver! Solve, assuming that the specific heat of silver is .24 J/g*degC, or 235 J/kg*K.arrow_forward
- You wish to cool a 1.95 kg block of brass initially at 80.0°C to a temperature of 41.0°C by placing it in a container of water initially at 20.0°C. Determine the volume (in L) of the liquid needed in order to accomplish this task without boiling. The density and specific heat of water are respectively 1,000 kg/m3 and 4,186 J/(kg · °C), and the specific heat of brass is 380 J/(kg · °C).arrow_forward314.0 kg copper bar is put into a smelter for melting. The initial temperature of the copper is 299.0 K. How much heat in kilojoules must the smelter produce to completely melt the copper bar? (The specific heat for copper is 386 J/kg•K, the heat of fusion for copper is 205 kJ/kg, and its melting point is 1357 K.)arrow_forwardA heavy pot made of copper has a mass of 2.07 kg (including the lid) and is heated in an oven to a temperature of 155 °C. You pour 0.10 kg of water at 25.6 °C into the pot and quickly close the lid so that no steam can escape. We assume that no heat is lost to the surrounding. For copper, Ccopper 390 J/(kg.K) = For water, Cwater = 4190 J/(kg.K), Lv = 2256 kJ/kg, Lƒ = 333 kJ/kg. What is the final mass of steam in the pot? garrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON