
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
How long does it take a 750-WW coffeepot to bring to a boil 0.85 LL of water initially at 18 ∘C∘C? Assume that the part of the pot which is heated with the water is made of 360 gg of aluminum, and that no water boils away. Ignore the heat loss to the surrounding environment. The value of specific heat for water is 4186 J/kg⋅C∘J/kg⋅C∘ and for aluminum is 900 J/kg⋅C∘J/kg⋅C∘.
Express your answer using two significant figures. In seconds
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.217 kg sample of tin initially at 96.9◦Cis dropped into 0.112 kg of water initially at10.2◦C.If the specific heat capacity of tin is230 J/kg ·◦C, what is the final equilibriumtemperature of the tin-water mixture? Thespecific heat of water is 4186 J/kg ·◦C.Answer in units of ◦C.arrow_forwardA 283 g silver figure of a polar bear is dropped into the 249 g aluminum cup of a well-insulated calorimeter containing 265 g of liquid water at 20.9°C. The bear's initial temperature is 98.5°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/ (kg-K), 910 J/ (kg-K), and 4190 J/ (kg-K). final temperature: °Carrow_forwardA 95.0-kg block of ice at 0.00°C breaks off from a glacier, slides along the frictionless ice to the ground from a height of 2.43 m, and then slides along a horizontal surface consisting of gravel and dirt. Find how much of the mass of the ice is melted by the friction with the rough surface, assuming 75.0% of the internal energy generated stays in the ice. Latent heat of fusion (Lf) for water 333,700 J/kg.arrow_forward
- An uninsulated container holds 3.5 mol of an ideal gas at an initial temperature of 300 K. The gas is compressed by a movable piston, and 500 J of work is done on the gas while being compressed. If the final temperature of the gas is 400 K, how much heat flows in or out of the gas during this process?arrow_forwardAssume Lake Michigan contains 4.90 x 1012 m³ of water, and assume the water's density is that of water at 20°C and 1 atm. (a) How much energy (in J) is required to raise the temperature of that volume of water from 12.2°C to 24.4°C? 4.1E19 From the density of water and the volume, what is the mass of the water? What is specific heat? How is it related to the energy input, mass, and temperature change? Use it to solve for the energy. Be careful with units. J (b) How many years would it take to supply this amount of energy by using a power of 1,400 MW generated by an electric power plant? 926 How is power related to energy and time? Knowing the energy from part (a), can you find the time? Be careful with units. Make sure you convert the time in seconds to years. yrarrow_forwardA 155 g copper bowl contains 230 g of water, both at 20.0°C. A very hot 300 g copper cylinder is dropped into the water, causing the water to boil, with 4.05 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy (in calories) is transferred to the water as heat? 8.6 X kcal (b) How much energy (in calories) is transferred to the bowl? 55 X kcal (c) What is the original temperature of the cylinder? 553.6 X °C Did you use the idea of conservation of energy? That is, did you equate the sum of the energy transfers to zero? For the bowl and cylinder, did you substitute the expression relating an energy transfer, the specific heat, the mass, and the temperature change? For the water, did you use the same expression to get the water to the boiling point? Did you also include an expression for the heat of vaporization? Did you use the given final temperature for each of the three materials?arrow_forward
- Suppose you have 2.5kg of steam at 100 degrees celcius occupying 6.5 meters cubed at a pressure of 1.013 x 10^5 Pa. When the steam condenses to water at 100 degrees celcius it occupies a volume of 0.55 meters cubed. If the latent heat of vaporization of water is 2.26 x 10^6 J/kg, what was the change in the water's internal energy?arrow_forwardA 1500-W hotplate is used to heat up a 1.04kg aluminum pot filled with 1.22kg of water and a 0.855kg lead mass for 5 minutes. If the initial temperature of the system was 72 degrees F, find the final equilibrium temperature. Assume that all the energy of the hot plate goes into the system. (C water = 4180 J/kg*K , C aluminum - 910 J/kg*K, C lead = 160 J/kg*K).arrow_forwardSuppose 9.30 x 105 J of energy are transferred to 2.00 kg of ice at 0°C. (a) Calculate the energy required to melt all the ice into liquid water. (b) How much energy remains to raise the temperature of the liquid water? (c)Determine the final temperature of the liquid water in Celsius.arrow_forward
- A 160 g copper bowl contains 120 g of water, both at 25.0°C. A very hot 420 g copper cylinder is dropped into the water, causing the water to boil, with 5,00 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder? The specific heat of water is 1 cal/g-K, and of copper is 0.0923 cal/g-K. The latent heat of vaporization of water is 539 Cal/kg.arrow_forwardAn ice block of mass 1.2000000000000002 kg at an initial temperature of –11 ∘C is put into a copper pot of mass 2.5 kg containing 4.3 L of water at 21 ∘C. If you heat up the pot, what is the amount of energy (in J) you need to convert all the ice and the water into steam? (Assume that no energy is lost from the system.) You may need some or all of the following constants: The specific heat of ice is 2200 J/kg ∘C, the specific heat of copper is 386 J/kg ∘C and the specific heat of water is 4186 J/kg ∘C. The latent heat of fusion of ice is 334000 J/kg and the heat of vaporization for water is 2256000 J/kg .arrow_forwardA 0.100 kg piece of ice at initial temperature −5.00 ◦C is placed in a perfectly insulated container with 1.00 kg (1 L) of water at initial temperature 20.0 ◦C. The container absorbs or releases no heat. All of the ice melts as the system reaches an equilibrium temperature Tf . How much heat must the ice exchange with the rest of the system to raise its temperature to the melting point, 0.00 ◦C? Would this heat exchanged be positive, zero, or negative? Once the ice reaches its melting point, how much heat must the ice exchange with the rest of the system to melt? Would this heat exchanged be positive, zero, or negative? Once the ice melts, it is liquid water at 0.00 ◦C. Write an expression for the heat exchanged by the newly-melted ice QI to reach the equilibrium temperature Tf . Would you expect QI to be positive, zero, or negative? Write an expression for the heat exchanged by the original water QW to reach the equilibrium temperature Tf from its initial temperature. Assuming no…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON