Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Gardeners are holding a nozzle at the end of a hose to wash way mud from landscaping. The nozzle exit has a diameter of 10cm and the water is flowing at a rate of 12 m3/min. In this situation, what is the average water exit velocity and what is the horizontal resistance force required to hold the nozzle?
Any help would be great
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Water in a duct of area 0.1 m2 has an average velocity of 7 m/s. The duct tapers slowly to 0.4 m2. What is the new average velocity?arrow_forwardAs5arrow_forwardLiquid fertiliser of density 1100 kg/m3 is being pumped along a pipe of diameter 15 cm at a constant rate of 5.25 kg/s. Calculate the average speed of the flow.arrow_forward
- As shown in the following figure, a pipe of cross-sectional area A = 0.01 m2 and atotal length of 5.5 m is used for siphoning water from a tank. The discharge from the siphonis 1.0 m below the level of the water in the tank. At its highest point, the pipe rises 1.5 mabove the level in the tank.(a) What is the water velocity v (m/s) at the discharge? (b) What is the lowest gauge pressure (in bars) in the tube? And wheredoes it occur? Neglect pipe friction. Is the lowest pressure higher than the vapor pressureof water at room temperature?(c) If the siphon reaches virtually all the way to the bottom of the tank (but is notblocked off), is the time taken to drain the tank equal to t = V/Av, where V is the initialvolume of water in the tank, and v is still the velocity (e.g., 4.43 m/s) as computed abovewhen the tank is full? Explain your answer.(d) A siphon can drain the liquid in the tank, which means that the liquid flowsupward at the right-hand side of the tube. It appears to be…arrow_forwardA two storey building has two faucets, one in the basement and one in the firstfloor. The maximum water (ρ = 1000 kg/m3) velocity at the basement faucet, when the first floor faucet is closed, is 13 m/s. The faucet diameter is 1.5 cm.Neglect all losses. What would be a maximum height (from the basement floor) for a faucet,to still get a maximum exit velocity of 6 m/s?arrow_forwardWater passes through a 2.5 cm (inner diameter) horizontal tube at a speed of 6.0 m/s. Water continues to flow into the part where the diameter suddenly increases. There is no device to add or remove one type of energy. If the diameter of the flow below is 5 cm, what is the change in the enthalpy of the water? What would happen if it was 10cm? What is the maximum enthalpy change due to sudden expansion of the tube? How does this change affect the temperature of the water (how many K)?arrow_forward
- In Fig. is shown a plot of pump net head as a function of pump volume flow rate, or capacity. On the figure, label the shutoff head, the free delivery, the pump performance curve, the system curve, and the operating point.arrow_forwardOn a trip to the beach (Patm 1 atm or 101.3 kPa), a car runs out of gasoline and it is necessary to siphon gasoline from a Good Samaritan's car. The siphon is a hose with a small diameter and to start the action it is necessary to insert one end into the tank full of gasoline, fill the hose with it through suction and then put the other end in a can that is placed under the tank level. The difference in pressure between point 1 (on the free surface of the gasoline in the tank) and point 2 (at the outlet of the tube) causes the liquid to flow from the highest elevation to the lowest. In this case, point 2 is located 0.75 m below point 1, and point 3 is 2 m above 1. The siphon diameter is 4 mm and friction losses in it must be ruled out. Determine: a) theminimum time to bring 4 L of gasoline from the tank to the can and b) the pressure at point 3. The density of the gasoline is 750 kg / m3.arrow_forwardA pipe of 0.25 m diameter carries water at the rate of 7.2 m3/s.The pressure head at the entry of the venturimeter, used to measure the flow rate in the pipe, is equivalent to 6 m of water. If the pressure head at the throat is zero, calculate the throat diameter of the venturi.Include fbd.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY