Question
For a particle with mass m in a 1-D box of length a, show that the first excited state
wavefunction is orthogonal to the wavefunction is orthogonal to the second excited state
wavefunction.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Similar questions
- Q/ Show that the oscillating probability density is linear in arbitrary wave beams that oscillates with a frequency equal to that of a linear oscillator?arrow_forwardPlease asaparrow_forwardAn Infinite Square Well of width L that is centred around x = 0 is shown in the figure. At t = 0, a particle exists in this system with the wavefunction provided, where Ψ0 is √(12/L), and Ψ = 0 for all other values of x. Calculate the probability density for this particle at t = 0, and state the position at which it takes its maximum value. then, calculate the expectation value for the position of this particle at t = 0, i.e. ⟨ x⟩. Compare the results of the positions found and explain why they are different.arrow_forward
- a) For a particle described by the wavefunction in Equation (1), show that the expectation values for momentum and momentum-squared are given by shown in image b) For the same particle, show that the expectation values for position and position-squared are given by shown in imagearrow_forwardThe figures below show the wave function describing two different states of a particle in an infinite square well. The number of nodes (within the well, but excluding the walls) in each wave function is related to the quantum number associated with the state it represents: Wave function A number of nodes = n-1 Wave function B M Determine the wavelength of the light absorbed by the particle in being excited from the state described by the wave function labelled A to the state described by the wave function labelled B. The distance between the two walls is 1.00 × 10-10 m and the mass of the particle is 1.82 × 10-30 kg. Enter the value of the wavelength in the empty box below. Your answer should be specified to an appropriate number of significant figures. wavelength = nm.arrow_forwardA particle with the velocity v and the probability current density J is incident from the left on a potential step of height Uo, that is, U (x) = Uo at r > 0 and U(x) = 0 at r 0.arrow_forward
arrow_back_ios
arrow_forward_ios