
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Question
![Find the trigonometric Fourier series for the function f(x): [-π/2, π/2] → R given by the
expression:
f(x) = ²²²
e²x
2
O
O
FS(x)=sinhr|1+En
FS (x) =
FS(x) =
O
FS(x)
=
sinh a
IT
sin πT
π
sinh a
7
2
2
(-1)"
+Σn-1 n²+1
+ Σn-1
11
2
(-1)"
n² +1
+ ΣΑ 1
(-1)"
n+1
(-1)"
n=1 n²+1
(cos 2nx + n sin 2nx)
1.
(cos 2nx n sin 2nx)
nx)].
(cos 2nx
-
-
(cos 2nx
L
n sin 2nx)
sin 2na)].](https://content.bartleby.com/qna-images/question/7fe9d10e-89b5-480b-b9fb-b8733688f212/a1624b7b-55ad-4f5b-974c-5d3fb82c35a2/pveaue_thumbnail.jpeg)
Transcribed Image Text:Find the trigonometric Fourier series for the function f(x): [-π/2, π/2] → R given by the
expression:
f(x) = ²²²
e²x
2
O
O
FS(x)=sinhr|1+En
FS (x) =
FS(x) =
O
FS(x)
=
sinh a
IT
sin πT
π
sinh a
7
2
2
(-1)"
+Σn-1 n²+1
+ Σn-1
11
2
(-1)"
n² +1
+ ΣΑ 1
(-1)"
n+1
(-1)"
n=1 n²+1
(cos 2nx + n sin 2nx)
1.
(cos 2nx n sin 2nx)
nx)].
(cos 2nx
-
-
(cos 2nx
L
n sin 2nx)
sin 2na)].
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 6 images

Knowledge Booster
Similar questions
- Consider f(x) = sin(x²). Is the function even, odd or neither, and which conse- quence does the answer have for its Fourier series?arrow_forward= 1) The function f(x) periodic on the interval [0, 2л] has complex Fourier series f(x): Σ(1/n²) einx where the sum over n goes from - infinity to infinity. Convert this to cosine and sine Fourier Series by finding the values of A's and B's in the expression Ao + ΣAn cos(nx) + Σ Bn sin(nx) where each sum goes from 1 to infinity. Hint: consider the n and -n term together in the complex Fourier Series or use Euler's identity.arrow_forwardFind the trigonometric Fourier series for the function f(x): [-T/2, π/2] → R given by the expression: ƒ(2) - {0 = O о O O cos 2x if x = [-π/2, 0] 0 if x = (0, π/2] O ∞ FS(x) = -2 cos(2x) + 1 n=1 FS(x) = −cos(2x) + Σ2 FS(x) = −sin(2x) + Σn=2 FS(x) = cos(2x) + Σn=0 FS(x) = cos(2x) + Ex-1 - n² cos² (n²-1)π 2n cos² n cos² (=) 2 n cos² (n²-1)T (+) 2 2(n²-1)π NE (+) (n.²-1) 2n cos² * ( =) 2 (n²+1)π -sin(2nx). -sin(2nx). -sin(nx). sin(2nx). -sin(2nx).arrow_forward
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education

Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

