Find the trigonometric Fourier series for the function f(x): [-T/2, π/2] → R given by the expression: f(x) = { O cos 2x if x = [-π/2, 0] 0 if x = (0, π/2] FS(x) = -2 cos (2x) + En=1 FS(x) = cos(2x) + Σ-2 FS (x) = sin(2x) + Σn-2 FS(x) = cos(2x) + Σ FS(x) = cos(2x) + Ex-1 n² cos² (n²-1)π ² ( =) 2 2n cos² n cos² n cos² (n²-1) T 2(n²-1)T n=0 (n²-1) JLTT (+) 2 2n cos² 72T 2 (=) TLTT 2 -sin(2nx). (=) (n²+1) T -sin(2nx). -sin(nx). -sin(2nx). -sin(2nx).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the trigonometric Fourier series for the function f(x): [-T/2, π/2] → R given by the
expression:
ƒ(2) - {0
=
O
о
O
O
cos 2x if x = [-π/2, 0]
0 if x = (0, π/2]
O
∞
FS(x) = -2 cos(2x) + 1
n=1
FS(x) = −cos(2x) + Σ2
FS(x) = −sin(2x) + Σn=2
FS(x) = cos(2x) + Σn=0
FS(x) = cos(2x) + Ex-1
-
n² cos²
(n²-1)π
2n cos²
n cos²
(=)
2
n cos²
(n²-1)T
(+)
2
2(n²-1)π
NE
(+)
(n.²-1)
2n cos²
* ( =)
2
(n²+1)π
-sin(2nx).
-sin(2nx).
-sin(nx).
sin(2nx).
-sin(2nx).
Transcribed Image Text:Find the trigonometric Fourier series for the function f(x): [-T/2, π/2] → R given by the expression: ƒ(2) - {0 = O о O O cos 2x if x = [-π/2, 0] 0 if x = (0, π/2] O ∞ FS(x) = -2 cos(2x) + 1 n=1 FS(x) = −cos(2x) + Σ2 FS(x) = −sin(2x) + Σn=2 FS(x) = cos(2x) + Σn=0 FS(x) = cos(2x) + Ex-1 - n² cos² (n²-1)π 2n cos² n cos² (=) 2 n cos² (n²-1)T (+) 2 2(n²-1)π NE (+) (n.²-1) 2n cos² * ( =) 2 (n²+1)π -sin(2nx). -sin(2nx). -sin(nx). sin(2nx). -sin(2nx).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,