
Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Breaking down steps to solve
c76
![**Problem Statement:**
Find the linear approximation to \( f(x) = \frac{1}{\sqrt{x}} \) at \( a = 4 \).
**Solution Overview:**
To find the linear approximation of a function at a given point, we use the formula for the tangent line approximation:
\[ L(x) = f(a) + f'(a)(x - a) \]
1. **Function:**
\[ f(x) = \frac{1}{\sqrt{x}} = x^{-0.5} \]
2. **Derivative:**
Using the power rule for differentiation:
\[ f'(x) = -0.5x^{-1.5} = -\frac{1}{2x^{1.5}} \]
3. **Evaluation at \( a = 4 \):**
- \( f(4) = \frac{1}{\sqrt{4}} = \frac{1}{2} \)
- \( f'(4) = -\frac{1}{2(4)^{1.5}} = -\frac{1}{2 \times 8} = -\frac{1}{16} \)
4. **Linear Approximation:**
Substitute the above values in the linear approximation formula:
\[ L(x) = \frac{1}{2} + \left(-\frac{1}{16}\right)(x - 4) \]
Simplifying:
\[ L(x) = \frac{1}{2} - \frac{1}{16}(x - 4) \]
Thus, the linear approximation of \( f(x) = \frac{1}{\sqrt{x}} \) at \( x = 4 \) is:
\[ L(x) = \frac{1}{2} - \frac{1}{16}(x - 4) \]](https://content.bartleby.com/qna-images/question/cdc8b149-2467-45b8-88fa-7bc1ca3ec305/6e714179-8ab9-456e-a330-0fc8fb3b0806/xpy1ly_thumbnail.jpeg)
Transcribed Image Text:**Problem Statement:**
Find the linear approximation to \( f(x) = \frac{1}{\sqrt{x}} \) at \( a = 4 \).
**Solution Overview:**
To find the linear approximation of a function at a given point, we use the formula for the tangent line approximation:
\[ L(x) = f(a) + f'(a)(x - a) \]
1. **Function:**
\[ f(x) = \frac{1}{\sqrt{x}} = x^{-0.5} \]
2. **Derivative:**
Using the power rule for differentiation:
\[ f'(x) = -0.5x^{-1.5} = -\frac{1}{2x^{1.5}} \]
3. **Evaluation at \( a = 4 \):**
- \( f(4) = \frac{1}{\sqrt{4}} = \frac{1}{2} \)
- \( f'(4) = -\frac{1}{2(4)^{1.5}} = -\frac{1}{2 \times 8} = -\frac{1}{16} \)
4. **Linear Approximation:**
Substitute the above values in the linear approximation formula:
\[ L(x) = \frac{1}{2} + \left(-\frac{1}{16}\right)(x - 4) \]
Simplifying:
\[ L(x) = \frac{1}{2} - \frac{1}{16}(x - 4) \]
Thus, the linear approximation of \( f(x) = \frac{1}{\sqrt{x}} \) at \( x = 4 \) is:
\[ L(x) = \frac{1}{2} - \frac{1}{16}(x - 4) \]
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning