College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The ship in Figure P14.39 travels along a straight line parallel to the shore and a distance d = 600 m from it. The ship’s radio receives simultaneous signals of the same frequency from antennas A and B, separated by a distance L = 800 m. The signals interfere constructively at point C , which is equidistant from A and B. The signal goes through the first minimum at point D, which is directly outward from the shore from point B. Determine the wavelength of the radio waves.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- the thickness of human hair is to be measured using the interference pattern produced by an air wedge. red light with a wavelength of 638nm is used on an air wedge that is 25.0cm long. If 10 bright fringes are counted across 1.06cm in the air wedge, what is the thickness of the hairarrow_forwardA piece of glass with a refractive index of n=1.5 has its top surface inclined by an angle k relative to its bottom surface, as shown. The horizontal length of the glass is L=2cm, and the thickness t of the thinner left side is not zero. The glass, which is surrounded by air, is illuminated from above with red light with a wavelength of 600nm in air. (a) What is k if there are bright constructive reflection peaks on the left edge and right edge of the piece of glass, and none in between? What are the 3 smallest possible thicknesses t for the thin left side of the glass for the conditions and answer for (a) : THE ANSWERS I HAVE BEEN GETTING HERE ARE NOT RIGHT.arrow_forwardIn Young's experiment, the electric fields of the waves arriving at point P are given by E1 = (5.00 µN/C) sin{(4.74 × 1015)t} E2 = (9.00 µN/C) sin{(4.74 × 1015)t + 21.1 rad}, where time t is in seconds. What is the amplitude of the resultant electric field at point P?arrow_forward
- TV-reception antennas for VHF are constructed with cross wires supported at their centers, as shown. The ideal length for the cross wires is one-half the wavelength to be received, with the more expensive antennas having one for each channel. Suppose you measure the lengths of the wires for particular channels and find them to be 1.94 and 0.753 m long, respectively. What are the frequencies for these channels?arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 96.0 MHz, perfectly in phase with each other. The two antennas are separated by a distance d= 6.20 m. An observer, P, is located on the x axis, a distance x= 84.0 m from antenna A, so that APB forms a right triangle with PB as hypotenuse. What is the phase difference between the waves arriving at P from antennas A and B? A P X B 4.594x10-¹ rad Computer's answer now shown above. You are correct. Your receipt no. is 158-6031 > Previous Tries Now observer P walks along the x axis toward antenna A. What is P's distance from A when he first observes fully destructive interference between the two waves? 1.203 m As P gets closer A, the path length difference gets larger. What's the smallest path length difference that gives destructive interference? Submit Answer Tries 0/6 Submit Answer Incorrect. Tries 1/6 Previous Tries If observer P continues walking until he reaches antenna A, at how many places along the x…arrow_forwardThe ship in the figure below travels along a straight line parallel to the shore and a distance d = 700 m from it. The ship's radio receives simultaneous signals of the same frequency from antennas A and B, separated by a distance L = 810 m. The signals interfere constructively at point C, which is equidistant from A and B. The signal goes through the first minimum at point D, which is directly outward from the shore from point B. Determine the wavelength of the radio waves.arrow_forward
- Waves from a radio station have a wavelength of 250 m. They travel by two paths to a home receiver 20.0 km from the transmitter. One path is a direct path, and the second is by reflection from a mountain directly behind the home receiver. What is the minimum distance from the mountain to the receiver that produces destructive interference at the receiver? (Assume that no phase change occurs on reflection from the mountain.)arrow_forwardTwo antennas located at points A and B are broadcasting radio waves of frequency 104.0 MHz. The signals start in phase with each other. The two antennas are separated by a distance d = 8.7 m. An observer is located at point P on the x axis, a distance x = 110.0 m from antenna A. The points A, P, and B form a right triangle. Now observer P walks along the x axis toward antenna A. What is P's distance from A when they first observe fully constructive interference between the two waves?arrow_forwardA cold distance planet has an atmosphere of hydrogen (speed of sound = 1320 m/s) over a liquid ocean of carbon dioxide (speed of sound = 259 m/s). A sudden shift in the rocky crust beneath the ocean creates a sound wave that heads toward the surface at an angle of 7 degrees. At the surface, the wave is refracted with a refraction angle of . . . Group of answer choices 49 degrees. 38 degrees. The wave undergoes total internal reflection. 80 degrees.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON