College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Shown is a spring attached to a 2.0 kg block. The other end of the spring is pulled by a motorized toy train that moves forward at 5.0 cm/s. The spring constant is 50 N/m, and the coefficient of static friction between the block and the surface is 0.60. The spring is at its equilibrium length at t = 0 s when the train starts to move. When does the block slip?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 0.1 kg disk is shot across a frictionless horizontal surface by compressing it against a spring and releasing it. The spring has a spring constant of 380 N/m and is compressed from its equilibrium position by 6.2cm when the disk to a complete stop. As the disk gets released from the spring, what will be the speed (in m/s) of the disk when the spring is compressed by 3.8cm?arrow_forwardA 306 g mass slides down a curved incline then collides with a spring. The spring constant of the spring is 156N/m. Assume that friction is negligable in these problems. If the mass initially compresses the spring at 0.63 cm, what is the maximum height the mass rises to on the incline? Assume the mass is released from rest.arrow_forward5. Moumita is holding a mass m=0.50kg, which is connected to the bottom of a vertical spring with spring constant k=10.0ON/m. She is holding the mass in place at a height h=1.5m above the floor. The spring is relaxed in this condition. When Moumita lets go of the mass, how far will the mass fall before it turns around and starts to travel upwards?arrow_forward
- A 500-g block is released from rest and slides down a frictionless track that begins 2.28 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 34.5 N/m. Find the maximum distance the spring is compressed. m 500 g harrow_forwardInitially sliding with a speed of 4.3 m/sm/s, a 2.0 kg block collides with a spring and compresses it 0.42 mm before coming to rest.What is the force constant of the spring?arrow_forwardA glider with mass m = 0.240 kg sits on a frictionless horizontal air track, connected to a spring with force constant k = 4.70 N/m . You pull on the glider, stretching the spring 0.110 m , and then release it with no initial velocity. The glider begins to move back toward its equilibrium position (x=0). What must the initial displacement of the glider be if its maximum speed in the subsequent motion is to be 2.40 m/s ?arrow_forward
- A block of mass, 1.5 kg is attached and secured to an end of a spring with a spring constant of 10,000 N/cm. The other end of the spring is secured to the wall. The block is pushed against the spring, which compresses the spring to a position of x = -0.04 cm. When uncompressed, the end of the spring that is attached to the block is at a position of x = 0.00 cm. The block/spring system is then released from rest, and the block travels along a rough horizontal track for the length of the spring. At 0.00 cm the surface changes. Can you help me calculate the block's velocity once it leaves the spring? Thank you.arrow_forwardThe 10-kg block is released with a speed of 5 m/s when the spring is unstretched. The coefficient of kinetic friction between the block and the inclined surface is 0.2. What is the speed of the block when it has slid 1 m down the surface? k = 200 N/m 5 m/s 30° 4.27 m/s O 3.85 m/s O 5.64 m/s O 3.38 m/s O 7.17 m/sarrow_forwardA horizontal spring with stiffness 0.8 N/m has a relaxed length of 16 cm (0.16 m). A mass of 22 grams (0.022 kg) is attached and you stretch the spring to a total length of 29 cm (0.29 m). The mass is then released from rest. What is the speed of the mass at the moment when the spring returns to its relaxed length of 16 cm (0.16 m)? m/sarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON