Exactly 5.00 mL aliquots of a solution containing analyte X were transferred into 50.00-mL volumetric flasks and the pH of the solution is adjusted to 9.0. The following volumes of a standard solution containing 2.00 µg/mL of X were then added into each flask and the mixture was diluted to volume: 0.000, 0.500, 1.00, 1.50 and 2.00 mL. The fluorescence of each of these solutions was measured with a fluorometer, and the following values were obtained: 3.26, 4.80, 6.42, 8.02 and 9.56, respectively. ii. Using relevant functions in Excel, derive a least-squares equation for the data, and use the parameters of this equation to find the concentration of the phenobarbital in the unknown solution.

Chemistry: Principles and Reactions
8th Edition
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:William L. Masterton, Cecile N. Hurley
Chapter14: Equilibria In Acid-base Solutions
Section: Chapter Questions
Problem 77QAP: Two students were asked to determine the Kb of an unknown base. They were given a bottle with a...
icon
Related questions
Question
Exactly 5.00 mL aliquots of a
solution containing analyte X were
transferred into 50.00-mL
volumetric flasks and the pH of
the solution is adjusted to 9.0. The
following volumes of a standard
solution containing 2.00 µg/mL of
X were then added into each flask
and the mixture was diluted to
volume: 0.000, 0.500, 1.00, 1.50
and 2.00 mL. The fluorescence of
each of these solutions was
measured with a fluorometer, and
the following values were
obtained: 3.26, 4.80, 6.42, 8.02
and 9.56, respectively.
ii. Using relevant functions in
Excel, derive a
least-squares equation for
the data, and use the
parameters of this
equation to find the
concentration of the
phenobarbital in the
unknown solution.
Transcribed Image Text:Exactly 5.00 mL aliquots of a solution containing analyte X were transferred into 50.00-mL volumetric flasks and the pH of the solution is adjusted to 9.0. The following volumes of a standard solution containing 2.00 µg/mL of X were then added into each flask and the mixture was diluted to volume: 0.000, 0.500, 1.00, 1.50 and 2.00 mL. The fluorescence of each of these solutions was measured with a fluorometer, and the following values were obtained: 3.26, 4.80, 6.42, 8.02 and 9.56, respectively. ii. Using relevant functions in Excel, derive a least-squares equation for the data, and use the parameters of this equation to find the concentration of the phenobarbital in the unknown solution.
Expert Solution
steps

Step by step

Solved in 6 steps with 6 images

Blurred answer
Knowledge Booster
Acid-Base Titrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Fundamentals Of Analytical Chemistry
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:
9781285640686
Author:
Skoog
Publisher:
Cengage
Principles of Modern Chemistry
Principles of Modern Chemistry
Chemistry
ISBN:
9781305079113
Author:
David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:
Cengage Learning
Chemistry: Principles and Practice
Chemistry: Principles and Practice
Chemistry
ISBN:
9780534420123
Author:
Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning