Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN: 9780134580999
Author: Elaine N. Marieb, Katja N. Hoehn
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- You find a neuron whose resting potential is -90mV. Which of the following are likely to be true? (select all that apply) Voltage-gated sodium channels are closed The neuron is fully permeable to sodium The neuron is permeable to potassium The neuron is hyperpolarizedarrow_forwardB A C Match the action potential phase in the plot below with the correct image below showing the Na+/K+ ATPase and voltage-gated K+ and Na+ channels. +50- D -50- -70- 0 E A B M D + OUT -IN [Choose ] [Choose] [Choose] SHE - OUT IN + OUT INarrow_forwardAs the axonal membrane depolarizes during the rising phase of an action potential, the amplitude of Na+ conductance changes from large to small the amplitude of Na+ conductance changes from small to large there is no Na+ conductance during this phase of the action potential the amplitude of Na+ conductance remains large and constant throughoutarrow_forward
- factors responsible for a negative resting membrane potential include: check all that apply: a. Na K pump b. different carrier proteins c. uneven distribution of ions d. difference in permeability of ions e. high potassium concentration in ECFarrow_forwardShow a complete circuit diagram of the model of the neuron using the specific numerical values for each component: potassium ion concentration outside: 4.0 mmol/L potassium ion concentration inside: 77.5 mmol/Larrow_forwardConditions: [Na+] outside = .3 mM [Na+] inside the presynaptic cell = .01 mM [dopamine] inside = .5 mM [dopamine] outside = .001 mM ΔGinward = RT ln [X] inside/[X] outside + z F Vm F = 23,000 cal/mol V R = 1.987 cal/ mol K Membrane potential is .07 V Temperature is 273 K Using the information above and image please answer these questions : Is the concentration of sodium higher on the outside or the inside of the presynaptic cell? Would the movement of sodium be active or passive moving OUT of the presynaptic cell? SHOW your work.arrow_forward
- The concentration of potassium ions inside a nerve cell membrane is higher than the concentration of sodium ions outside the mem-brane, yet the inside of the membrane (where the cation concentra-tion is higher) is negative to the outside. Explain this observation in terms of permeability properties of the membrane.arrow_forwardThree currents are produced by a 56 mV depolarization leading to an action potential in a squid axon membrane during a voltage clamp experiment as shown. What is the mechanism underlying the capacitive current? 56 mV Depolarization Capacitative current Late current Early current Time (ms) Opening of Na* channels Current due to the Na/K* pump O Neutralization of the charge on the membrane Opening of K channels Membrane Membeane current imA/cm potential (mV)arrow_forwardA membrane potential (Vm) labeled axis on the graph In the graph draw the phases of the action potential Include the channels involved and when they open and close matching them to the Vm Indicate the periods in which the action potential can or cannot occurarrow_forward
- Place the following events in chronological order from 1-8: Nat enters the cell, and depolarization occurs to approximately +30 mV. The voltage across the cell membrane is -70 mV, the resting membrane potential. Upon reaching the peak of the action potential, the VG Nat channels are inactivated by the closing of their inactivation gate and the activation gate of each VG K channel opens. VG K channels close by the closing of their activation gate, and the resting membrane potential is gradually restored. An excitatory post-synaptic potential depolarizes the membrane to threshold and the activation gate of VG Nat channels open. Upon returning to the resting membrane potential, VG Na channels are reset by opening of the inactivation gate and the closing of the activation gate. VG K+ channels are slow to close, resulting in an excess of K* efflux and hyperpolarization. Depolarization occurs as K+ flows out of the cell.arrow_forwardSeparately, draw a table using arrows to depict the appropriate magnitude and direction of the forces and ion fluxes at different membrane potentials for a ligand-gated channel that is equally permeable to both ion X+ and ion Y+. The equilibrium potential for ion X+ is -60 mV, and the equilibrium potential for ion Y+ is -20 mV. Which item best represents the forces and fluxes for a membrane potential of +40 mV?arrow_forwardConsider the following three diagrams of a nerve cell membrane. They show resting potential, depolarization, and hyperpolarization. Figure out which one is which, then draw them in the order they occur in a cell that undergoes an action potential outside + Na* inside K* Na* Nat K Nat K Na potential: -80 mV outside + Na K* Na* inside Na+ K Nat Na* K+ potential: +30 mV outside Na Na Na Na* K+ inside K* Na* Kt potential: -70 mVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education