Structural Analysis
6th Edition
ISBN: 9781337630931
Author: KASSIMALI, Aslam.
Publisher: Cengage,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 750-ft equal-tangent crest vertical curve connects tangents that intersect at elevation 572 ft. The curve starts at station 15+25. The initial grade is +5% and the final grade is -3%. Determine the elevation of the middle point of the curve.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. A vertical parbolic curve was design in order to have a clear sight distance of 120 m. The grade lines intersect at Sta 9+000 at elev 160.50 . The curve was design such that when the height of the drivers eye is 1.50 m above the payment it would just see an object whose height is 0.10m above the pavement. Determine the max speed that a car could travel grade of 5% and a downgrade of -3%.arrow_forwardA horizontal curve on Texas Highway 83 (Tx83) comprises of a two-lane rural highway with a lane width of 12 ft. and superelevation of 8%. The posted speed limit is 50 mph. along a 0.5-mile section of highway, both a horizontal and vertical curve exists. The vertical curve has an initial grade of -2.00% and a final grade of +4.00%. The PVI is at station 156+40. A driver traveling eastbound strikes a stationary roadway object. The daytime crash results in a fatality and is being investigated for safe design speed. Evaluate and comment on the roadway design.arrow_forwardAn equal-tangent curve connects a +1.0% and a -0.5% grade. The PVC is at station 54+24 and the PVI is at station 56+92. Is this curve long enough to provide passing sight distance for a 60-mi/r design speed? Problem 2arrow_forward
- I need the answer as soon as possiblearrow_forward1) An equal-tangent crest vertical curve has a 50 mi/h design speed. The initial grade is +3%. The high point is at station 33+37.43 and the PVT is at station 37+18.26. What is the elevation difference between the high point and the PVT? 2) A 1400-ft-long sag vertical curve (equal tangent) has a PVC at stateion 115+00 and elevation 750ft. The intial grade is -3.5% and the final grade is +6.5%. Determine the elevation and stationing of the low point, PVI, and PVT. If you could show as many steps taken as possible that would be helpful in me actually understanding how to do the problem. Thanksarrow_forwardNote : If you don't know the solution please leave it but don't give me wrong solution. A vertical curve joining entering grade of -4% with an exiting grade of - 7% begins at station 2+607 and is being designed with K value of 72. What is the station of the highest point on the curve . Code the station as the total distance from the origin, i.e., if the station is 1+100 code it as 1100.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning
Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education
Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning