College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
describe how the instantaneous velocity of a car traveling on an elevated air track can be calculated from displacement and time data.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A vehicle accelerates down an on ramp and eventually reaches highway speed. The position of the vehicle is described by the following equation:x(t) = At2/(t+B) write an expression for the vehicles instantaneous velocity as a function of timearrow_forwardA car starts from rest. It accelerates at constant acceleration for 5.0 seconds during which the car covers a distance of 125 m. After that the car continues at that speed for 22 seconds, after which the car slows down at a constant deceleration of – 4.5 m/sec2 until coming to a complete stop. Draw a v vs t, graph, label all the relevant data, and use the graphical method to determine total distance traveled.arrow_forwardYou qualitatively analyzed the motion of a van earlier. Now, using the example of the ball thrown into the air, you can do a more detailed analysis of the van's motion. The table shown here includes the time and position data, with one worked example for finding acceleration. Time Position Velocity Ad Acceleration t(s) (m/s) Ar (m/s") 0.0 0.0 6.0 2.0 12 +3.0 12 4.0 36 Sample Calculation Notice that the velocity that will be plotted at t = 1.0 s is the average velocity between t = 0.0 s and t 2.0 s. The velocity that will be plotted at t 3.0 s is the average velocity between t = 2.0 s and 4.0 s. The acceleration that will be plotted at t= 2.0 s is the average acceleration between t = 1.0 s and t = 3.0s. 6.0 48 8.0 96 10.0 142 12.0 190 14.0 226 16.0 250 Adgd-d 12 m-0.0 m 2.0 s-0.0 s V = 18.0 262 Alo2 t2-lo 12 m 2.0 s %3D Analyze and Conclude 1. How well do the average and instantaneous velocities that you calculated agree with = 6.0 m each other? 36 m-12 m V= Afz4 %3D %3D 2 Separate the…arrow_forward
- The following graph depicts the velocity of someone playing tag over a short period of time. Use this velocity graph to answer the following questions. The person's maximum magnitude for velocity is 4.5 m/s in both the positive and negative directions. A is at time point 3 seconds, B is at time point 4.5 seconds, C is at time point 5.5 seconds, D is at time point 7 seconds, E is at 8 seconds, F is at 9 seconds and G is at 10 seconds. What is the acceleration in meters/second2 (m/s2) at the 2 second mark of playing tag? What is the acceleration in meters/second2 (m/s2) at the 5 second mark? What is the velocity in meters/second (m/s) at the 5 second mark? What is the acceleration in meters/second2 (m/s2) at the 6.5 second mark? What is the acceleration in meters/second2 (m/s2) at the 8.5 second mark? What is the velocity in meters/second (m/s) at the 9.5 second mark?arrow_forwardA circular racetrack has a distance of 755 m. A racer is currently driving her car on the racetrack. As she starts the car from rest, it begins to accelerate to a speed of 120 kph in 9 s. a. Determine the magnitude of the total acceleration of the car, 4 s after the car begins to increase its speed. b. If she maintains the speed of the car to be 120 kph, determine the magnitude of the total acceleration of the car after 5s. c. Upon accelerating to 120 kph, will the car pass its starting point? Prove using kinematic equations.arrow_forwardA body moves along one dimension with a constant acceleration of 3.15 m/s² over a time interval. At the end of this interval it has reached a velocity of 11.0 m/s. (a) If its original velocity is 5.50 m/s, what is its displacement (in m) during the time interval? X Which constant-acceleration equation relates the initial velocity and final velocity to the acceleration and displacement? Can you solve this equation for the displacement? m (b) What is the distance it travels (in m) during this interval? X How are displacement and distance different? Does the direction of the velocity change over the time interval in this scenario? Knowing this, can you relate the displacement to the distance? m (c) A second body moves in one dimension, also with a constant acceleration of 3.15 m/s2, but over some different time interval. Like the first body, its velocity at the end of the interval is 11.0 m/s, but its initial velocity is -5.50 m/s. What is the displacement (in m) of the second body over…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON