Define T:P,-R as shown to the right. P(- 1) a. Find the image under T of p(t) = - 2-t b. Show that Tis a linear transformation. c. Find the matrix for T relative to the basis B= (b,, b2. b) = (1, t, ) for Pz and the standard basis E= (e,. e2. e3) for R. T(p) = P(0) P(1) a. The image under Tof p() -2-tis b. Let p(t) and q(t) be polynomials in Pz. Show that T(p() + q() = T(p() + T(q(). First apply the definition of T. (p•9)(1) T(p() + q() = (p+ aX0) Next apply the definition of (p + glt), What is the result? (p• q)(- 1) P(- 1)+ q(1) P(t) • q(t) (p+aX1) O A. P(0) + q(0) OB. P() + q() (p+ q)() p(1)+ al- 1) P(1) + q(t) tis ti P(1) • q(1) P(- 1)• q(- 1) (p+aX- 1) Oc. P(0) + q(0) OD. P(0) + q(0) (p+ gX0) p(- 1)+ q(- 1) P(1) + q(1) (p+ aX1) Rewrite this as the sum of two vectors. What is the result? P(1) P(- 1) 9(- 1) O A. P() OB. P(0) q(0) P(t) P(1) 9(1) P(1) q(1) P(- 1) 9(1) Oc. P(0) q(0) OD. P(0) q(0) P(- 1) 9- 1) P(1) q( - 1)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

 

 

Define T:P,→R3 as shown to the right.
P(-1)
Find the image under T of p(t) = -2-t
T(p) =
p(0)
b. Show that Tis a linear transformation.
p(1)
c. Find the matrix for T relative to the basis B= (b,, b,, ba) = (1, t, t2} for P, and the standard basis E= (e,, e,, eg) for R3.
-----
a. The image under Tof p(t) = -2-t is.
b. Let p(t) and q(t) be polynomials in P2. Show that T(p(t) + q(t)) = T(p(t)) + T(q(t)). First apply the definition of T.
(p+ g(1)
T(p(t) + q(t)) =
(р+ g)(0)
Next apply the definition of (p + q)(t). What is the result?
(p + q)(- 1)
P(- 1)+ q(1)
p(t) + q(t)
(p+ qXt)
OA.
p(0) + q(0)
OB.
p(t) + q(t)
(p + g)(t)
P(1) + q(- 1)
p(t) + q(t)
(p+ q)(t)
tis ti
p(1) + q(1)
p(- 1) + q(- 1)
(p + q)( - 1)
Oc.
p(0) + q(0)
OD.
p(0) + q(0)
(p + q)(0)
P(- 1)+ q(- 1)
p(1) + q(1)
(p+ q)(1)
Rewrite this as the sum of two vectors. What is the result?
p(t)
q(t)
P(- 1)
q(- 1)
O A.
p(t)
q(t)
OB.
P(0)
q(0)
p(t)
q(t)
P(1)
q(1)
P(1)
q(1)
P(-1)
q(1)
OC.
p(0)
q(0)
OD.
p(0)
q(0)
p(- 1)
q( - 1)
P(1)
q(- 1)
Transcribed Image Text:Define T:P,→R3 as shown to the right. P(-1) Find the image under T of p(t) = -2-t T(p) = p(0) b. Show that Tis a linear transformation. p(1) c. Find the matrix for T relative to the basis B= (b,, b,, ba) = (1, t, t2} for P, and the standard basis E= (e,, e,, eg) for R3. ----- a. The image under Tof p(t) = -2-t is. b. Let p(t) and q(t) be polynomials in P2. Show that T(p(t) + q(t)) = T(p(t)) + T(q(t)). First apply the definition of T. (p+ g(1) T(p(t) + q(t)) = (р+ g)(0) Next apply the definition of (p + q)(t). What is the result? (p + q)(- 1) P(- 1)+ q(1) p(t) + q(t) (p+ qXt) OA. p(0) + q(0) OB. p(t) + q(t) (p + g)(t) P(1) + q(- 1) p(t) + q(t) (p+ q)(t) tis ti p(1) + q(1) p(- 1) + q(- 1) (p + q)( - 1) Oc. p(0) + q(0) OD. p(0) + q(0) (p + q)(0) P(- 1)+ q(- 1) p(1) + q(1) (p+ q)(1) Rewrite this as the sum of two vectors. What is the result? p(t) q(t) P(- 1) q(- 1) O A. p(t) q(t) OB. P(0) q(0) p(t) q(t) P(1) q(1) P(1) q(1) P(-1) q(1) OC. p(0) q(0) OD. p(0) q(0) p(- 1) q( - 1) P(1) q(- 1)
Now apply the definition of T again. What is the result?
O A. p(t) + T(q(t))
O B. T(p(t)) + T(q(t))
OC. T(p(t)) + q(t)
Let p(t) be a polynomial in P, and let c be a scalar. Show that T(c• (t)) = c• T(p(t)). First apply the definition of T.
T(c• p() =
Next apply the definition of (c. p)(t). What is the result?
c•p(1)
c• p(t)
c•P(-1)
OA.
c• p(0)
OB.
c•p(0)
Oc.
C•p(0)
C*P(-1)
c•p(t)
c•p(1)
Remove a common factor from this vector. What is the result?
p(t)
p(1)
P(- 1)
O A. C p(t)
о в. с.
p(0)
OC. C*
p(0)
P(t)
p(-1)
P(1)
Now apply the definition of T again, thus completing the proof that Tis a linear transformation. what is the result?
O A. T(p(t)) +c
O B. c.T(p(t))
О С. Т(р())
c. The matrix for T relative to B and E is
Transcribed Image Text:Now apply the definition of T again. What is the result? O A. p(t) + T(q(t)) O B. T(p(t)) + T(q(t)) OC. T(p(t)) + q(t) Let p(t) be a polynomial in P, and let c be a scalar. Show that T(c• (t)) = c• T(p(t)). First apply the definition of T. T(c• p() = Next apply the definition of (c. p)(t). What is the result? c•p(1) c• p(t) c•P(-1) OA. c• p(0) OB. c•p(0) Oc. C•p(0) C*P(-1) c•p(t) c•p(1) Remove a common factor from this vector. What is the result? p(t) p(1) P(- 1) O A. C p(t) о в. с. p(0) OC. C* p(0) P(t) p(-1) P(1) Now apply the definition of T again, thus completing the proof that Tis a linear transformation. what is the result? O A. T(p(t)) +c O B. c.T(p(t)) О С. Т(р()) c. The matrix for T relative to B and E is
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,