Concept explainers
A cylindrical fuel rod (k = 30 W/m•K) of 2 cm in diameter is encased in a concentric tube and cooled by water. The fuel rod generates heat uniformly at a rate of 100 MW/m3, and the average temperature of the cooling water is 115°C with a convection heat transfer coefficient of 2500 W/m2.k. The operating pressure of the cooling water is such that the surface temperature of the fuel rod must be kept below 200°C to avoid the cooling water from reaching the critical heat flux (CHF). The critical heat flux is a thermal limit at which a boiling crisis can occur Determine the temperature at the surface of the rod. What can you do to lower the temperature aty the surface?
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 5 images
- Combustion gases passing through a 5-cm-internal-diameter circular tube are used to vaporize waste water at atmospheric pressure. Hot gases enter the tube at 225 kPa and 250oC at a mean velocity of 2.5 m/s, and leave at 150o If the average heat transfer coefficient is 150 W/m2K and the inner surface temperature of the tube is 110oC, determine (a) the tube length and (b) the rate of evaporation of water.arrow_forwardConsider a stainless steel spoon ( k = 8.7 Btu/hrft°F) partially immersed in boiling water at 200 deg * F in a kitchen at 75°F. The handle of the spoon has a cross section of 0.08in * 0.5in and extends 7 inches into the air from the free surface of the water. If the heat transfer coefficient at the exposed surfaces of the spoon handle is 3 Btu/hrft²°F, determine the temperature of the tip of the spoon handle. Assume that the heat loss from the tip of the spoon is negligible.arrow_forwardNonearrow_forward
- Citrus fruits are very susceptible to cold weather, and extended exposure to subfreezing temperatures can destroy them. Consider an 8-cm-diameter orange that is initially at 15°C. A cold front moves in one night, and the ambient temperature suddenly drops to –6°C, with a heat transfer coefficient of 15 W/m2·K. Using the properties of water for the orange and assuming the ambient conditions to remain constant for 20400 seconds before the cold front moves out, determine the surface temperature of orange that night. Solve this problem using analytical one-term approximation method. The properties of the orange are approximated by those of water at the average temperature of about 5°C, k = 0.571 W/m·°C and α = 0.136 × 10–6 m2/s. The surface temperature of orange that night isarrow_forwarda wire is submerged in a liquid at 110 degrees Celsius where the convective heat transfer coefficient is 4000 W/m^2K Determine the temperature at the center of the wire in degrees celsiusarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY