Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Consider the given loading on a pipe. A rectangular rosette (45 degree apart) is placed on a point (K) which is located on the half length of the pipe as shown below. Note that the second gage (b) is parallel to the z-axis . When the load is applied, the strain gages read εa=80 µS, εb=60 µS, εc=20 µS. The pipe have an elastic modulus of Est=201 GPa.
a. Determine the in-plane principal strains and the principal strain directions for the given set of strains (Use Mohr circle)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Three readings are obtained from an equiangular strain gage rosette mounted on a free and unloaded surface of a part. Determine the magnitude of the principal strains and their orientation with respect to the 0° gage. Check the results with a Mohr circle.Assume The three known strains are all linear strainsarrow_forwardThe strain components ɛx, ɛy, and Yxy are given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0p, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 0 µɛ, ɛy = 430 µɛ, Yxy = 230 µrad. Enter the angle such that -45° s 0,s+45°. Answer: Ep1 με Ep2 = Ymax in-plane prad Yabsolute max. prad %3Darrow_forwardThe strain components for a point in a body subjected to plane strain are εx = -270 με, εy = 730με and γxy = -799 μrad. Using Mohr’s circle, determine the principal strains (εp1 > εp2), the maximum inplane shear strain γip, and the absolute maximum shear strain γmax at the point. Show the angle θp (counterclockwise is positive, clockwise is negative), the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.arrow_forward
- 3. The elastic portion of the stress-strain diagram for a steel alloy is shown in the figure below. The specimen from which it was obtained had an original diameter of 13 mm and a gauge length of 50 mm. If a load of P = 20 kN is applied to the specimen, determine its diameter and gauge length. Take v = 0.4 σ (MPa) 400 0.002 e(mm/mm)arrow_forwardDetermine the stress resultants N(x), V(x), M(x) and draw the diagrams of the stress resultants and calculate the extremal values. At first, consider all parameters (F, a, L, ...) as variables and fill in their actual values at the end of your calculation.arrow_forwardThe elastic portion of the tension stress–strain diagram for an aluminum alloy is shown in the figure. The specimen used for the test has a gage length of 2 in. and a diameter of 0.5 in. If the applied load is 10 kip, determine the new diameter of the specimen. The shear modulus is Gal = 3.811032 ksi.arrow_forward
- A force P and a force Q, applied via a nut, are acting on the arm attached to the end of a shaft made of steel. The strain gauge readings on point A of the shaft show the following deformation values: ε1 = 630x10-6, ε2 = 600x10-6, and ε3 = - 189x10-6. Determine the magnitudes of the applied forces P and Q (E = 200 GPa, υ = 0.3).arrow_forwardThe rigid bar ABC pivots about support B. After application of load P, end C of the rigid bar moves upward by 0.06 in. If the length of bar (1) is L₁ = 51 in, determine the average normal strain in bar (1). Assume that a = 135 in., b=32 in., and c = 0.06 in. 4₁ 1 a Rigid bar B barrow_forwardThe strain components Ex, Ey, and Yxy are given for a point in a body subjected to plane strain. Using Mohr's circle, determine the principal strains, the maximum in-plane shear strain, and the absolute maximum shear strain at the point. Show the angle 0p, the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch. Ex = 0 μE, Ey = 310 με, Yxy = 280 μrad. Enter the angle such that -45° ≤ 0,≤ +45° Answer: Ep1 = Ep2 = Ymax in-plane = Yabsolute max. = 0p = με με urad uradarrow_forward
- (a) Determine the shear strain at corner A if the plate distorts as shown by the dashed line. (b) Determine the average normal strain that occurs along the diagonal AC and DB. 5 mm 2 mm 4 mm 2 mm IB 300 mm $2 mm D A 400 mm 3 mmarrow_forwardThe strain components for a point in a body subjected to plane strain are εx = -480 με, εy = -750με and γxy = -914 μrad. Using Mohr’s circle, determine the principal strains (εp1 > εp2), the maximum inplane shear strain γip, and the absolute maximum shear strain γmax at the point. Show the angle θp (counterclockwise is positive, clockwise is negative), the principal strain deformations, and the maximum in-plane shear strain distortion in a sketch.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY