College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
P.1. A block of mass m= 2.50 kg is pushed a distance d= 2.20 m along
a frictionless, horizontal table by a constant applied force of
magnitude F=16.0 N directed at an angle =25.0° below the
horizontal as shown in Figure P7.1. Determine the work done on the
block by (a) the applied force, (b) the normal force exerted by the
table, (c) the gravitational force, and (d) the net force on the block.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Can you explain how you determined that Fnet=Fcos.
Solution
by Bartleby Expert
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question
Can you explain how you determined that Fnet=Fcos.
Solution
by Bartleby Expert
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 5.40-kg box rests on a horizontal surface. The coefficient of kinetic friction between the box and surface is µk 0.410. A horizontal force pulls the box at constant velocity for 23.0 cm. Find the work done by the applied horizontal force. Submit Answer Tries 0/10 Find the work done the frictional force. Submit Answer Tries 0/10 Find the work done by the net force. Submit Answer Tries 0/10arrow_forwardA 70 kg rollerblader skates across a skating rink floor. The graph below shows the net external force component F cos(?) along the displacement as a function of the magnitude of the displacement d. Determine the following. (a) the work done (in J) by the net force component F cos(?) acting on the rollerblader as he moves from 0 to 5.0 m (b) the work done (in J) by the net force component F cos(?) acting on the rollerblader from 5.0 m to 10.0 marrow_forwardA 54-kg box is being pushed a distance of 7.2 m across the floor by a force whose magnitude is 167 N. The force is parallel to the displacement of the box. The coefficient of kinetic friction is 0.20. Determine the work done on the box by each of the four forces that act on the box. Be sure to include the proper plus or minus sign for the work done by each force.arrow_forward
- A 325 N force is pulling on an 85.0 kg refrigerator as it slides across a horizontal floor. The force acts at an angle of 25.0° above the horizontal surface of the floor. The coefficient of kinetic friction between the refrigerator and the floor is 0.150, and the refrigerator moves a distance of 5.50 m. Find (a) the work done by the pulling force, (b) the work done by the force of kinetic friction, (c) the net amount of work done on the refrigerator, and (d) if the refrigerator was initially at rest determine the speed of the refrigerator after the 5.50m displacement. (e) Include a force (or free-body) diagram of the situation. ]arrow_forwardA water-skier is being pulled by a tow rope attached to a boat. As the driver pushes the throttle forward, the skier accelerates. A 73.5-kg water-skier has an initial speed of 5.2 m/s. Later, the speed increases to 12.2 m/s. Determine the work done by the net external force acting on the skier. W =arrow_forwardStarting from rest, a 4.70-kg block slides 3.40 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is = 0.436. (a) Determine the work done by the force of gravity. (b) Determine the work done by the friction force between block and incline. (c) Determine the work done by the normal force. (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were used to span the same vertical height?arrow_forward
- Starting from rest, a 5.50-kg block slides 2.30 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is k (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were used to span the same vertical height? 0.436.arrow_forwardA block of mass m = 2.80 kg is pushed a distance d = 5.40 m along a frictionless, horizontal table by a constant applied force of magnitude F = 16.0 N directed at an angle θ = 27.0° below the horizontal as shown in the figure below. (a) Determine the work done on the block by the applied force. J(b) Determine the work done on the block by the normal force exerted by the table. J(c) Determine the work done on the block by the gravitational force. J(d) Determine the work done by the net force on the block. Jarrow_forwardA farmer is using a rope and pulley to lift a bucket of water from the bottom of a well that is hy = 9.5 m deep. The farmer uses a force F1 = 59.5 N to pull the bucket of water directly upwards. The total mass of the bucket of water is mb + mw = 3.1 kg. a.Calculate how much work Wf in J the farmer does on the bucket of water (via the rope) to raise it to ground level. b.Calculate how much work Wg in J gravity does on the bucket filled with water as the farmer lifts it up the well. c. Calculate the net work Wnet in J done on the bucket of water by the two forces F1 and Fg.arrow_forward
- A trunk of mass m = 0.6 kg is pushed a distance d = 30 cm up an incline with an angle of inclination theta = 23.0° by a constant horizontal force P = 425 N (see figure). The coefficient of kinetic friction between the trunk and the incline is 0.31. P. Calculate the work done on the trunk by the applied force P. Calculate the work done on the trunk by the frictional force. Calculate the work done on the trunk by the gravitational force.arrow_forwardA 325 N force is pulling on an 85.0 kg refrigerator as it slides across a horizontal floor. The force acts at an upward angle of 25.0° above the horizontal. The coefficient of kinetic friction between the refrigerator and the floor is 0.150, and the refrigerator moves a distance of 5.50 m. Find (a) the work done by the pulling force, (b) the work done by the force of kinetic friction, (c) the net amount of work done on the refrigerator, and (d) if the refrigerator was initially at rest determine the speed of the refrigerator after the 5.50m displacement. (e) Include a force (or free-body) diagram of the situation. [Diagram 2 pts.]arrow_forwardA 199 kg crate hangs from the end of a rope of length L = 13.7 m. You push horizontally on the crate with a varying force F to move it distance d = 4.25 m to the side (see the figure). (a) What is the magnitude of F when the crate is in this final position? During the crate's displacement, what are (b) the total work done on it, (c) the work done by the gravitational force on the crate, and (d) the work done by the pull on the crate from the rope? (e) Knowing that the crate is motionless before and after its displacement, use the answers to (b), (c), and (d) to find the work your force F does on the crate.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON