Principles of Modern Chemistry
8th Edition
ISBN: 9781305079113
Author: David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Calculate the standard reaction potential and use the half-reaction method to determine the moles of electrons per reaction.
3Cl2(aq) + 2Cr3+(aq) + 7H2O(l) --> 6Cl-(aq) + Cr2O72-(aq) + 14H+(aq)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the standard cell potential you would obtain from a cell at 25C using an electrode in which Hg22+(aq) is in contact with mercury metal and an electrode in which an aluminum strip dips into a solution of Al3+(aq)?arrow_forwardCalculate the standard cell potential of the following cell at 25C. Sn(s)Sn2+(aq)I2(aq)I(aq)arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forward
- At 298 K, the solubility product constant for Pb(IO3)2 is 2.6 1013, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction Pb(IO3)2(s)+2ePb(s)+2IO3(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions, and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/Pb(IO3)2 electrode in a 3.5 103 M solution of NaIO3.arrow_forwardCalculate the equilibrium constant at 25 C for the reaction 2 Ag+(aq) + Hg() 2 Ag(s) + Hg2+(aq)arrow_forwardGiven the following two standard reduction potentials, solve for the standard reduction potential of the half-reaction M3++eM2+ (Hint: You must use the extensive property G to determine the standard reduction potential.)arrow_forward
- At 298 K, the solubility product constant for PbC2O4 is 8.5 1010, and the standard reduction potential of the Pb2+(aq) to Pb(s) is 0.126 V. (a) Find the standard potential of the half-reaction PbC2O4(s)+2ePb(s)+C2O42(aq) (Hint: The desired half-reaction is the sum of the equations for the solubility product and the reduction of Pb2+. Find G for these two reactions and add them to find G for their sum. Convert the G to the potential of the desired half-reaction.) (b) Calculate the potential of the Pb/PbC2O4 electrode in a 0.025 M solution of Na2C2O4.arrow_forwardAn electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardCalculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forward
- An electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN, and containing 0.10 M SCN . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.45 V. What is the solubility product of silver thiocyanate?arrow_forwardA 1.0-L sample of 1.0 M HCl solution has a 10.0 A current applied for 45 minutes. What is the pH of the solution after the electricity has been turned off?arrow_forwardAn electrochemical cell is made by placing a zinc electrode in 1.00 L of 0.200 M ZnSO4 solution and a copper electrode in 1.00 L of 0.0100 M CuCl2 solution. a What is the initial voltage of this cell when it is properly constructed? b Calculate the final concentration of Cu2+ in this cell if it is allowed to produce an average current of 1.0 amp for 225 s.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning