Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
Calculate the silver ion concentration, [Ag+ ], of a solution prepared by dissolving 1.00 g of AgNO3 and 10.0 g of KCN in sufficient water to make 1.00 L of solution. (Hint: Because Kf is very large, assume the reaction goes to completion then calculate the [Ag+ ] produced by dissociation of the complex.)
a. 3 x10^-22 M
b. 4.3 x 10^-23 M
c. 8.2 x 10^-25 M
d. 1 x 10^-21 M
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Similar questions
- A saturated solution of silver arsenate, Ag3AsO4, contains 8.5 107 g Ag3AsO4 per mL. Calculate the Ksp of silver arsenate. Assume that there are no other reactions but the Ksp reaction.arrow_forwardEach pair of ions below is found together in aqueous solution. Using the table of solubility product constants in Appendix J, devise a way to separate these ions by adding a reagent to precipitate one of the ions as an insoluble salt and leave the other in solution. (a) Cu2+ and Ag+ (b) A13+ and Fe3+arrow_forwardWrite equations for the stepwise formation of each of the following complex ions. a. CoF63 b. Zn(NH3)42+arrow_forward
- Calculate the cadmium ion concentration, [Cd2+], in a solution prepared by mixing 0.100 L of 0.0100 M Cd(NO3)2 with 1.150 L of 0.100 NH3(aq).arrow_forwardThe solubility of cadmium oxalate. CdC2O4, in 0.150 M ammonia is 6.1 103 mol/L. What is the oxalate-ion concentration in the saturated solution? If the solubility product constant for cadmium oxalate is 1.5 108, what must be the cadmium-ion concentration in the solution? Now calculate the formation constant for the complex ion Cd(NH3)42+.arrow_forwardSolid Pbl2 (Ksp = 9.8 109) is placed in a beaker of water. After a period of time, the lead(II) concentration is measured and found to be 1.1 103 M. Has the system reached equilibrium? That is, is the solution saturated? If not, will more Pbl2 dissolve?arrow_forward
- What is the equilibrium constant for the following reaction? AgCl(s)+I(aq)AgI(s)+Cl(aq) Does the equilibrium lie predominantly to the left or to the right? Will AgI form if iodide ion. I, is added to a saturated solution of AgCl?arrow_forwardYou place 1.234 g of solid Ca(OH)2 in 1.00 L of pure water at 25 C. The pH of the solution is found to be 12.68. Estimate the value of Ksp for Ca(OH)2.arrow_forwardA volume of 50 mL of 1.8 M NH3 is mixed with an equal volume of a solution containing 0.95 g of MgCl2. What mass of NH4Cl must be added to the resulting solution to prevent the precipitation of Mg(OH)2?arrow_forward
- Calculate the molar solubility of CdCO3 in a buffer solution containing 0.115 M Na2CO3 and 0.120 M NaHCO3arrow_forwardThe solubility of Pb(IO3)2(s) in a 7.2 102-M KIO3 solution is 6.0 109 mol/L. Calculate the Ksp value for Pb(IO3)2(s).arrow_forwardCalculate K for the reactions in Question 2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning