College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Calculate the minimum thickness of an oil slick on water that appears blue when illuminated by white light perpendicular to its surface. Take the blue wavelength to be 470 nm and the index of refraction of oil to be 1.40.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light is incident from air onto glass of refractive index nG=1.65 ; calculate the Brewster angle, at which the reflectance for TM polarisation is zero. Give your answer in degrees, to the nearest 0.1 degree.arrow_forwardProblem 1: You want to test a special watertight monochromatic light source in an un- derwater environment. If the light source shines its beam of electromagnetic radiation into your eyes when you and the light source are above the water, with both your eyes and the light source immersed in air, the beam appears to your eyes to have a deep violet color. The index of refraction of water is about 1.33 What color, if any, would your eyes perceive the beam to have when you and the light source are submerged in water – and why? (A) No color. The beam would become invisible under water because its wavelength in water is shorter than in air, corresponding to a wavelength of ultra-violet light. The beam's wavelength in the water determines its visibility to the eye under water, and ultra-violet light is not visible to the human eye. (B) Same color as in air, above the water, i.e., deep violet. Under water, the beam would have the same wavelength as in air. The beam's wavelength in the water…arrow_forwardAstronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the Holine. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is kept at a constant temperature. (a) Find the minimum value of d that will produce maximum transmission of perpendicular H light if the dielectric has an index of refraction of 1.400. (Enter your answer to one decimal place.) nm (b) If the temperature of the filter increases above the normal value increasing its thickness, what happens to the transmitted wavelength? (Assume the index of refraction of the dielectric remains constant.) ---Select--- (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light. nmarrow_forward
- Unpolarized light passes through two ideal Polaroid sheets. The axis of the first is vertical and the axis of the second is at 28.0° to the vertical. What fraction of the incident light is transmitted?arrow_forward(A) Show a model as to how white light interacts with a t-shirt that appears to an observer as red and white striped in terms of light wave absoprtion and reflection. (B) Make a model of what will happen when white light is shined through a blue and green filter stacked on top of one another. It will appear black because white light is absorbed but show this in a skectch.arrow_forwardA uniform plane wave is generated from a ham radio antenna on earth. The take off angle is 60 degrees (the angle ffrom ground going up is 60 deg). Using simple trigonometry the angle if incidence with the ionosphere would be 30 degrees. Assume the F layer of the ionosphere is 300 km above the earth. The wave frequency from the transmitter is 21 MHz. WIll this wave refract off the ionosphere and end up somewhere on earth? If yes, what is the distance it travels?arrow_forward
- Astronomers observe the chromosphere of the Sun with a filter that passes the red hydrogen spectral line of wavelength 656.3 nm, called the H, line. The filter consists of a transparent dielectric of thickness d held between two partially aluminized glass plates. The filter is held at a constant temperature. (a) Find the minimum value of d that produces maximum transmission of perpendicular H, light if the dielectric has an index of refraction of 1.494. (Assume that the glass's refractive index exceeds 1.494.) nm (b) If the temperature of the filter increases above the normal value, increases its thickness, what happens to the transmitted wavelength? (Its index of refraction does not change significantly.) O It increases. O It decreases. O It remains unchanged. (c) The dielectric will also pass what near-visible wavelength? One of the glass plates is colored red to absorb this light. nm Additional Materials O eBookarrow_forwardWhat is the critical angle for light traveling in diamond (refractive index n=2.4) surounded by water (refractive index n=13)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON