Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 17) A50-mm-dia endmill cuts 6061 aluminum with 30% tool engagement at a depth of 6 mm. The tool rotates at 200 rpm and is feeding at 250 mm/min. There are 2 teeth set at a rake angle of 10°. a. Calculate the required power of cutting. b. Determine the spindle torque. c. Determine the cutting force on each tooth. d. If the thrust force is measured to be 350N, estimate the tool-chip interface friction coefficient. How could you physically verify your power estimate?arrow_forwardThe following data is given for slab milling of a 300 mm long 50 mm wide mild steel block: Cutter of diameter= 60 mm; Numbers of teeth =12; Cutter speed = 120 rev/min; Depth of cut = 3.2 mm; Feed is 0.25 mm/tooth.Determine (i) Table feed in mm/min, (ii) MRR (iii) Power (iv) Torque and (v) Total machining time. Assumesuitable approach and over-run and specific energy of mild steel as 5 Ws/mm3.arrow_forwardA Ø1.0” piece of titanium needs to be turned on a lathe using a carbide cutting tool. The surface speed is 170 ft/min and the chip load is .015 in/rev. What is the recommended feed for the turning operation above?arrow_forward
- Manufacturingarrow_forwardCalculate the time required for completing a 5mm deep finishing cut on a 150mm wide, 600mmlong face of a 25mm thick steel block using a face milling cutter of 150mm diameter with 6teeth. The cutting condition are Vc =1.5m/sec and fz = 0.1mm.arrow_forwardUsing slot milling with a cutting tool surface width of 36mm was performed from the top surface to cut a workpiece of 85 x 42 x 8 cm into two equal parts. The milling cutter is 180 mm in diameter and has eight teeth. Cutting speed = 60 m/min, chip load = 0.35 mm/ tooth, and depth of cut = 2 mm, given that the setup and machine settings provide an approach distance of 7mm before actual cutting begins and an overtravel distance of 20 mm after actual cutting has finished, and the return time is a 4-second for idle pass stroke. Determine:- 1. What is the total machining time required for the entire workpiece? 2. The maximum metal removal rate during cutting.arrow_forward
- In a turning operation on low carbon steel with hardness = 135 HB, the cutting speed = 180 m/min, feed = 0.35 mm/rev, and depth of cut = 6.5 mm. The original work piece has 26 mm Diameter and 120 mm Length. How much power will the lathe draw in performing this operation if its mechanical efficiency = 90% and operator's efficiency = 82%? The specific energy is 3.8 J/mm³arrow_forwardIn a turning operation, cutting speed =200 m/min; feed = 0.25mm mm/rev, and depth of cut = 4.00mm Thermal diffusivity of the work material = 20m mm^2/s and volumetric specific heat =3.5(10^ -3 )J/mm^ 3 -C If the temperature increase above ambient temperature (20degreesC) is the angle measured by a tool-chip thermocouple to be 700degreesC, determine the specific energy for the work material in this operation.arrow_forwardA turning operation is performed on C1008 steel (a ductile steel) using a tool with a nose radius= 1.3 mm. Cutting speed = 61 m/min and feed = 0.27 mm/rev. Compute an estimate of the surface roughness in this operation. (Hint: the ratio of actual to ideal roughness can be read on the figure below) Equations used; Ra Ri Actual Ratio Theoretical 32NR = rai Ri 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0 Ductile metals Cast irons Free machining alloys. 100 30.5 200 Cutting speed-ft/min 61 Cutting speed - m/min 300 91.5 400 122arrow_forward
- Q.1 A turning operation uses a rotation speed = 150 rpm, feed = 0.38 mm/rev, and depth of cut = 5.00 mm. The diameter of the workpiece before cut is 50mm and it is length was 350mm. .Calculate the material removal ratearrow_forwardi need the answer quicklyarrow_forwardIn turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY