(c90)In my code below , can you help me achieve all the points in the image : #include #include #include #include #include "graph.h" #include "dijkstra.h" #define INFINITY DBL_MAX /* find shortest paths between source node id and all other nodes in graph. */ /* upon success, returns an array containing a table of shortest paths.  */ /* return NULL if *graph is uninitialised or an error occurs. */ /* each entry of the table array should be a Path */ /* structure containing the path information for the shortest path between */ /* the source node and every node in the graph. If no path exists to a */ /* particular desination node, then next should be set to -1 and weight */ /* to DBL_MAX in the Path structure for this node */ Path *dijkstra(Graph *graph, int id, int *pnEntries) {        int n;     int i, j;     int* nv = get_vertices(graph, &n);                    int *S = malloc(n * sizeof(int));     double *D = malloc(n * sizeof(double));     int *R = malloc(n * sizeof(int));     Path *table = malloc(n * sizeof(Path));          /* check if graph and starting node are valid */     if (graph == NULL || id < 0 || id >= n)     {         *pnEntries = 0;         return NULL;     }          /* initialize S to contain all the networks (vertices) except the source node */     for (i = 0, j = 0; i < n; i++)     {         if (i != id)         {             S[j++] = i;         }     }          /* initialize D with the weights of the edges from the source node, or infinity if no edge exists */     for (i = 0; i < n; i++)     {         Edge *edge = get_edge(graph, id, i);         if (edge != NULL)         {             D[i] = edge_weight(edge);             R[i] = id;         }         else         {             D[i] = INFINITY;             R[i] = 0;         }     }          /* repeatedly follow the remaining rules of Dijkstra's algorithm, updating the values in D and R until S is empty */     while (n > 1)     {         /* find the vertex in S with the smallest value in D */         int u = S[0];         double min = D[u];         for (i = 1; i < n - 1; i++)         {             if (D[S[i]] < min)             {                 u = S[i];                 min = D[u];             }         }                  /* remove vertex u from S */         for (i = 0; i < n - 1; i++)         {             if (S[i] == u)             {                 S[i] = S[n - 2];                 break;             }         }         n--;                  /* update the values in D and R for the remaining vertices in S */         for (i = 0; i < n - 1; i++)         {             int v = S[i];             Edge *edge = get_edge(graph, u, v);             if (edge != NULL && D[v] > D[u] + edge_weight(edge))             {                 D[v] = D[u] + edge_weight(edge);                 R[v] = u;             }         }     }          /* create the routing table to be returned */     for (i = 0; i < n; i++)     {         table[i].next_hop = R[i];         table[i].weight = D[i];     }     /* free unused memory and set *pnEntries to the correct value */     free(S);     free(D);     free(R);     *pnEntries = n;     free(nv);     return table; }

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

(c90)In my code below , can you help me achieve all the points in the image :

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include "graph.h"
#include "dijkstra.h"

#define INFINITY DBL_MAX

/* find shortest paths between source node id and all other nodes in graph. */
/* upon success, returns an array containing a table of shortest paths.  */
/* return NULL if *graph is uninitialised or an error occurs. */
/* each entry of the table array should be a Path */
/* structure containing the path information for the shortest path between */
/* the source node and every node in the graph. If no path exists to a */
/* particular desination node, then next should be set to -1 and weight */
/* to DBL_MAX in the Path structure for this node */
Path *dijkstra(Graph *graph, int id, int *pnEntries)
{   
    int n;

    int i, j;
    int* nv = get_vertices(graph, &n);
    
    
    
    int *S = malloc(n * sizeof(int));
    double *D = malloc(n * sizeof(double));
    int *R = malloc(n * sizeof(int));
    Path *table = malloc(n * sizeof(Path));
    
    /* check if graph and starting node are valid */
    if (graph == NULL || id < 0 || id >= n)
    {
        *pnEntries = 0;
        return NULL;
    }
    
    /* initialize S to contain all the networks (vertices) except the source node */
    for (i = 0, j = 0; i < n; i++)
    {
        if (i != id)
        {
            S[j++] = i;
        }
    }
    
    /* initialize D with the weights of the edges from the source node, or infinity if no edge exists */
    for (i = 0; i < n; i++)
    {
        Edge *edge = get_edge(graph, id, i);

        if (edge != NULL)
        {
            D[i] = edge_weight(edge);

            R[i] = id;
        }
        else
        {
            D[i] = INFINITY;
            R[i] = 0;
        }
    }
    
    /* repeatedly follow the remaining rules of Dijkstra's algorithm, updating the values in D and R until S is empty */
    while (n > 1)
    {
        /* find the vertex in S with the smallest value in D */
        int u = S[0];
        double min = D[u];
        for (i = 1; i < n - 1; i++)
        {
            if (D[S[i]] < min)
            {
                u = S[i];
                min = D[u];
            }
        }
        
        /* remove vertex u from S */
        for (i = 0; i < n - 1; i++)
        {
            if (S[i] == u)
            {
                S[i] = S[n - 2];
                break;
            }
        }
        n--;
        
        /* update the values in D and R for the remaining vertices in S */
        for (i = 0; i < n - 1; i++)
        {
            int v = S[i];
            Edge *edge = get_edge(graph, u, v);
            if (edge != NULL && D[v] > D[u] + edge_weight(edge))
            {
                D[v] = D[u] + edge_weight(edge);
                R[v] = u;
            }
        }
    }
    
    /* create the routing table to be returned */
    for (i = 0; i < n; i++)
    {
        table[i].next_hop = R[i];
        table[i].weight = D[i];
    }

    /* free unused memory and set *pnEntries to the correct value */
    free(S);
    free(D);
    free(R);
    *pnEntries = n;
    free(nv);

    return table;
}

Test failed when processing: two networks (CODE: FetchRoute Table2)
Test failed when processing: fully-connected mesh (CODE: FetchRoute Table19)
Test failed when processing: an arbitray networks (CODE: FetchRoute Table8)
Test crashed when attempting to mark an arbitrary network with unreachable destinations
Test failed when processing: the weights on routes (CODE: FetchRoute Table8)
Program does not seem to have sufficient implementation to test memory usage
dijkstra() correctly returns NULL if an invalid source network is passed
Transcribed Image Text:Test failed when processing: two networks (CODE: FetchRoute Table2) Test failed when processing: fully-connected mesh (CODE: FetchRoute Table19) Test failed when processing: an arbitray networks (CODE: FetchRoute Table8) Test crashed when attempting to mark an arbitrary network with unreachable destinations Test failed when processing: the weights on routes (CODE: FetchRoute Table8) Program does not seem to have sufficient implementation to test memory usage dijkstra() correctly returns NULL if an invalid source network is passed
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Binary numbers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education