College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
Block 1, of mass m1 = 3.70 kg , moves along a frictionless air track with speed v1 = 23.0 m/s . It collides with block 2, of mass m2 = 23.0 kg , which was initially at rest. The blocks stick together after the collision.
(a) Find the magnitude pi of the total initial momentum of the two-block system.
(b) Find vf, the magnitude of the final velocity of the two-block system.
(c) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- On a frictionless horizontal air table, puck A (with mass 0.254 kg ) is moving toward puck B (with mass 0.365 kg), which is initially at rest. After the collision, puck A has velocity 0.116 m/s to the left, and puck B has velocity 0.646 m/s to the right. a) What was the speed vAi of puck A before the collision? b) Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.arrow_forwardTwo shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at voi = 3.00 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of 0 = 35.0° with the horizontal axis while the green disk makes an angle of o 55.0° with this axis as in Figure b. Determine the speed of each disk after the collision. Vof = m/s Vaf = m/s After the collision Before the collision Need Help? Watch It Read Itarrow_forwardA 0.20 kg object is gliding to the right on a frictionless, horizontal air track with a speed of 2.00 m/s. It has a head-on collision with a 0.40 kg object that is gliding to the left with a speed of 0.75 m/s. Find the final velocity (magnitude and direction) of each glider if the collision is elastic.arrow_forward
- On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward puck B (with mass 0.370 kg ), which is initially at rest. After the collision, puck A has velocity 0.122 m/s to the left, and puck B has velocity 0.649 m/s to the right. What was the speed vAi of puck A before the collision? Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.arrow_forwardA block of mass m1=1.50 kg is initially travelling at u1=3.50 m/s to the right. It collides with a block of mass m2=1.10 kg, travelling at u2=2.00 m/s to the left. After the collision, block 2 is seen travelling at v2=1.20 m/s to the right. Find the coefficient of restitution in this situationarrow_forwardCar A and Car B are traveling in the same direction (call it ), with B behind A, and initial speeds vA=5.6 m/s, and vB = 6 m/s. The cars have identical mass m=103 kg, and they experience an elastic collision. Now, this collision is observed by a third person traveling in a car with constant velocity v=6 m/s, traveling in the same direction as the two cars. From the point of view of this person calculate the following: Find the initial momentum of car a and b Find the final momentum of car a and b Find the total kinetic energyarrow_forward
- Two shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 6.55 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of θ = 38.0° with the horizontal axis while the green disk makes an angle of ϕ = 52.0° with this axis as in Figure b. Determine the speed of each disk after the collision. vof = m/svgf = m/sarrow_forwardTwo identical pucks collide on an air hockey table. One puck starts at rest. The incoming puck has a speed of 6.00 m/s and scatters to an angle of 30.0º. Use the fact that Θ1 – Θ2 = 90º for elastic collisions of objects that have identical masses — in other words, the pucks move apart at a right angle. (a) Sketch the collision, with angles labeled. (b) What is the velocity (magnitude and direction) of the second puck after it is struck?arrow_forwardTwo masses approach each other and make a head-on, completely elasticcollision. The system is isolated from any external forces during impact. The initialspeeds are u 1 = 2.00 m/s and u2 = 4.00 m/s, and the mass values are m1 = 0.500 kg and m2 = 3.00 kg. (a) Find the total momentum of the system before the collision. (b) What is the velocity of particle 1 relative to particle 2 before the collision? (c) Determine the velocities of particle 1 and (d) particle 2 after the collision. (e) What impulse acted on particle 1 during the collision?arrow_forward
- Two shuffleboard disks of equal mass, one orange and the other green, are involved in a perfectly elastic glancing collision. The green disk is initially at rest and is struck by the orange disk moving initially to the right at vOi = 5.80 m/s as in Figure a, shown below. After the collision, the orange disk moves in a direction that makes an angle of ? = 34.0° with the horizontal axis while the green disk makes an angle of ? = 56.0° with this axis as in Figure b. Determine the speed of each disk after the collision.arrow_forwardTwo objects of equal mass collide. Object A is initially moving with a velocity of 15 m/s in the +x-direction, and object B is initially at rest. After the collision, object A is at rest. There are no external forces acting on the system of two masses. (a) Use momentum conservation to deduce the velocity of object B after the collision. (b) Is this collision elastic? Justify your answer.arrow_forwardA particle with an initial linear momentum of 2.30 kg · m/s directed along the positive x-axis collides with a second particle, which has an initial linear momentum of 4.60 kg · m/s, directed along the positive y-axis. The final momentum of the first particle is 3.45 kg · m/s, directed 45.0° above the positive x-axis. Find the final momentum of the second particle. magnitude direction above the negative x-axisarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON