College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 24 m/s. The masses of the two objects are 3.6 and 8.1 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is the one moving initially and the case (b) when the small-mass object is the one moving initially.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A truck of mass 1.5x10^4 kg travelling at 85 km/h [S] collides with a car of mass 1.2x10^3 kg travelling at 30 km/h [S]. The collision is perfectly inelastic. a) Calculate the magnitude and direction of the velocity of the vehicles immediately after the collision. b) Determine the decrease in kinetic energy during the collisionarrow_forwardA billiard ball traveling at 5.00 m/s collides with an identical billiard ball initially at rest on the level table. The initially moving billiard ball (A) deflects 60° from its original direction while the other ball, which was initially at rest, travels 30° from the original direction of A. a)Find the speed of each of the masses A and B after the collision? b) Is the collision elastic or inelastic?arrow_forwardOn a frictionless air track where motion is constricted to a line, a 2.0-kg glider moving in the positive x-direction at 4 m/s collides elastically with a 3.0-kg glider moving in the negative x-direction at 6 m/s. What are the velocities of both masses after the collision?arrow_forward
- A 5.3 kg sphere makes a perfectly inelastic collision with a second sphere initially at rest (they stick together after the collision). The composite system moves with a speed equal to one third the original speed of the 5.3 kg sphere. What is the mass of the second sphere?arrow_forwardQuesitos: The drawing shows a bullet passing through two blocks that rest on a horizontal, frictionless surface. Rule out air resistance. The bullet completely passes through the first block and is buried in the second block. Notice that after the collision, both blocks move. Can the Conservation Principle be applied from Linear Momentum to this three-body system? Justify your answer (Ignore any loss of mass from the first block). Problem: A 4.00-g bullet moves horizontally with velocity of + 355m / s. The mass of the first block is 1150 g, and its velocity after the bullet passes through it it is +0.550 m / s. The mass of the second block is 1530 g. (a) Obtain the speed of the bullet after passing through the first block, (b) obtain the velocity of the second block after the bullet is buried in itarrow_forwardA 0.060-kgkg tennis ball, moving with a speed of 5.80 m/sm/s , has a head-on collision with a 0.090-kgkg ball initially moving in the same direction at a speed of 3.48 m/sm/s . Assume that the collision is perfectly elastic. Determine the speed of the 0.090-kgkg ball after the collision. Express your answer to two significant figures and include the appropriate units.arrow_forward
- A 0.01 kg bullet traveling horizontally at the speed of sound (343 m/s) embeds itself into the Kevlar vest of a stationary 100 kg physics professor. The bullet and the professor then move as one. What is the speed of the bullet/professor system after the collision?arrow_forwardA 12 kg block, initially moving to the right, collides with a stationary 18 kg block, causing the 18 kg to move off to the right. The collision is perfectly elastic. We may conclude that after the collision, the 12 kg block will stop. move to the right with less speed than it had before the collision. move to the right with the same speed that it had before the collision. move to the left with less speed than it had before the collision. move to the left with the same speed that it had before the collision.arrow_forwardChapter 07, Problem 30 GO One object is at rest, and another is moving. The two collide in a one-dimensional, completely inelastic collision. In other words, they stick together after the collision and move off with a common velocity. Momentum is conserved. The speed of the object that is moving initially is 24 m/s. The masses of the two objects are 3.2 and 7.9 kg. Determine the final speed of the two-object system after the collision for the case (a) when the large-mass object is the one moving initially and the case (b) when the small-mass object is the one moving initially. (a) Vf = (b) Vf =arrow_forward
- Two objects, A and B, with masses 3.2 kg and 1.8 kg, move in a frictionless horizontal surface. Object A moves to the right at a constant speed of 5.1 m/s while object B moves to the right at a constant speed of 1.4 m/s. They collide and stick together. a) Find the total kinetic energy of the system after the collision. b) Is the kinetic energy of the system conserved? Explain.arrow_forwardNeed help checking a practice problem. Thanks!arrow_forwardINITIAL: FINAL: M. A white billiard ball with mass mw = 1.53 kg is moving directly to the right with a speed of v = 3.25 m/s and collides elastically with a black billiard ball with the same mass mb = 1.53 kg that is initially at rest. The two collide elastically and the white ball ends up moving at an angle above the horizontal of ew = 51° and the black ball ends up moving at an angle below the horizontal of Ob = 39°. %3D 1) What is the final speed of the white ball? m/s Submit 2) What is the final speed of the black ball? m/s Submitarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON