Human Heredity: Principles and Issues (MindTap Course List)
11th Edition
ISBN: 9781305251052
Author: Michael Cummings
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Please help with this question!
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- A couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. Should the parents be concerned about the heterozygous condition as well as the homozygous mutant condition?arrow_forwardA couple was referred for genetic counseling because they wanted to know the chances of having a child with dwarfism. Both the man and the woman had achondroplasia (MIM 100800), the most common form of short-limbed dwarfism. The couple knew that this condition is inherited as an autosomal dominant trait, but they were unsure what kind of physical manifestations a child would have if it inherited both mutant alleles. They were each heterozygous for the FGFR3 (MIM 134934) allele that causes achondroplasia. Normally, the protein encoded by this gene interacts with growth factors outside the cell and receives signals that control growth and development. In achrodroplasia, a mutation alters the activity of the receptor, resulting in a characteristic form of dwarfism. Because both the normal and mutant forms of the FGFR3 protein act before birth, no treatment for achrondroplasia is available. The parents each carry one normal allele and one mutant allele of FGRF3, and they wanted information on their chances of having a homozygous child. The counsellor briefly reviewed the phenotypic features of individuals with achondroplasia. These include facial features (large head with prominent forehead; small, flat nasal bridge; and prominent jaw), very short stature, and shortening of the arms and legs. Physical examination and skeletal X-ray films are used to diagnose this condition. Final adult height is approximately 4 feet. Because achondroplasia is an autosomal dominant condition, a heterozygote has a 1-in-2, or 50%, chance of passing this trait to his or her offspring. However, about 75% of those with achondroplasia have parents of average size who do not carry the mutant allele. In these cases, achondroplasia is due to a new mutation. In the couple being counseled, each individual is heterozygous, and they are at risk for having a homozygous child with two copies of the mutated gene. Infants with homozygous achondroplasia are either stillborn or die shortly after birth. The counselor recommended prenatal diagnosis via ultrasounds at various stages of development. In addition, a DNA test is available to detect the homozygous condition prenatally. What if the couple wanted prenatal testing so that a normal fetus could be aborted?arrow_forwardA proband female with an unidentified disease seeks the advice of a genetic counselor before starting a family. Based on the following data, the counselor constructs a pedigree encompassing three generations: (1) The maternal grandfather of the proband has the disease. (2) The mother of the proband is unaffected and is the youngest of five children, the three oldest being male. (3) The proband has an affected older sister, but the youngest siblings are unaffected twins (boy and girl). (4) All the individuals who have the disease have been revealed. Duplicate the counselors featarrow_forward
- Familial retinoblastoma, a rare autosomal dominant defect, arose in a large family that had no prior history of the disease. Consider the following pedigree (the darkly colored symbols represent affected individuals): a. Circle the individual(s) in which the mutation most likely occurred. b. Is the person who is the source of the mutation affected by retinoblastoma? Justify your answer. c. Assuming that the mutant allele is fully penetrant, what is the chance that an affected individual will have an affected child?arrow_forwardAchondroplasia is a rare dominant autosomal defect resulting in dwarfism. The unaffected brother of an individual with achondroplasia is seeking counsel on the likelihood of his being a carrier of the mutant allele. What is the probability that the unaffected client is carrying the achondroplasia allele?arrow_forwardMike was referred for genetic counseling because he was concerned about his extensive family history of colon cancer. That family history was highly suggestive of hereditary nonpolyposis colon cancer (HNPCC). This predisposition is inherited as an autosomal dominant trait, and those who carry the mutant allele have a 75% chance of developing colon cancer by age 65. Mike was counseled about the inheritance of this condition, the associated cancers, and the possibility of genetic testing (on an affected family member). Mikes aunt elected to be tested for one of the genes that may be altered in this condition and discovered that she did have an altered MSH2 gene. Other family members are in the process of being tested for this mutation. Seventy-five percent of people who carry the mutant allele will get colon cancer by age 65. This is an example of incomplete penetrance. What could cause this?arrow_forward
- Mike was referred for genetic counseling because he was concerned about his extensive family history of colon cancer. That family history was highly suggestive of hereditary nonpolyposis colon cancer (HNPCC). This predisposition is inherited as an autosomal dominant trait, and those who carry the mutant allele have a 75% chance of developing colon cancer by age 65. Mike was counseled about the inheritance of this condition, the associated cancers, and the possibility of genetic testing (on an affected family member). Mikes aunt elected to be tested for one of the genes that may be altered in this condition and discovered that she did have an altered MSH2 gene. Other family members are in the process of being tested for this mutation. Once a family member is tested for the mutant allele, is it hard for other family members to remain unaware of their own fate, even if they did not want this information? How could family dynamics help or hurt this situation?arrow_forwardMike was referred for genetic counseling because he was concerned about his extensive family history of colon cancer. That family history was highly suggestive of hereditary nonpolyposis colon cancer (HNPCC). This predisposition is inherited as an autosomal dominant trait, and those who carry the mutant allele have a 75% chance of developing colon cancer by age 65. Mike was counseled about the inheritance of this condition, the associated cancers, and the possibility of genetic testing (on an affected family member). Mikes aunt elected to be tested for one of the genes that may be altered in this condition and discovered that she did have an altered MSH2 gene. Other family members are in the process of being tested for this mutation. Is colon cancer treatable? What are the common treatments, and how effective are they?arrow_forwardPedigree Analysis Is a Basic Method in Human Genetics Using the pedigree provided, answer the following questions. a. Is the proband male or female? b. Is the grandfather of the proband affected? c. How many siblings does the proband have, and where is he or she in the birth order?arrow_forward
- Phenylketonuria and alkaptonuria are both autosomal recessive diseases. If a person with PKU marries a person with AKU, what will the phenotype of their children be?arrow_forwardGiven the karyotype shown at right, is this a male or a female? Normal or abnormal? What would the phenotype of this individual be?arrow_forwardThe Joneses were referred to a clinical geneticist because their 6-month-old daughter was failing to grow adequately and was having recurrent infections. The geneticist took a detailed family history (which was uninformative) and a medical history of their daughter. He discovered that their daughter had a history of a constant cough and wheeze that was becoming progressively worse, had difficulty gaining weight (failure to thrive), and had an extensive history of yeast infection (thrush) in her mouth. The geneticist did a simple blood test to check their daughters white blood count and determined that she had severe combined immunodeficiency (SCID). The geneticist explained that SCID is an immune deficiency that causes a marked susceptibility to infections. The defining characteristic is usually a severe defect in both the T- and B-lymphocyte systems. This results in one or more infections within the first few months of life that are serious and may even be life-threatening. Based on the family history, it was possible that their daughter had inherited a mutant allele from each of them and therefore was homozygous for a gene that causes SCID. If so, each time the Joneses had a child, there would be a 25% chance that the child would have SCID. Prenatal testing is available to determine whether the developing fetus has SCID. If the Joneses want to be certain that their next child will not have SCID, what types of reproductive options do you think they have?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning
Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning
Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College