Question

Transcribed Image Text:A rigid tank with volume of 0.1 m contains 200 gram of nitrous oxide gas
(N2O). The gas was initially at temperature 70°C. As a result of heat loss to the
surrounding, the temperature of the gas in the tank drops until it reaches thermal
equilibrium with the surrounding at 30°C. Assuming the nitrous oxide to behave
as an ideal gas with molecular weight of 44.013 kg/kmol and the universal gas
constant to be 8.314 kJ/kmol.K, determine,
(b)
i.
the initial pressure of the gas in the tank (bar);
the final pressure of the gas in the tank (bar); and
the work done during the process (kJ).
ii.
iii.
iv.
Plot the process on a temperature versus volume diagram.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 1 images

Knowledge Booster
Similar questions
- A canister with a piston contains 1.05 kg of air at 30.0°C and 1.25 x 105 Pa. Energy is transferred by heat into the system as it expands and the pressure rises to 4.25 x 105 Pa. Throughout the expansion, the relationship between pressure and volume is given by P = cv1/2) where C is a constant. Air may be modeled as a diatomic ideal gas with a molar mass of M = 28.9 g/mol. Determine the following. (a) initial volume (in m3) 0.01477 The ideal gas law may be used to describe the air in any state, Since we want the initial volume, we should use the pressure and temperature for the initial state. How can you determine the number of moles of air from the total mass and the molar mass? m3 (b) final volume (in m) m3 (c) final temperature (in K) K (d) work done on the air (in J) (e) energy transferred by heat (Enter the magnitude in MJ.) MJarrow_forwardA glass container encloses a low pressure of 02 gas at 298 K. The molecular weight of 02 is 32.0 g/mol. (A) Calculate the mean squared velocity, v², of these molecules in units of m²/s². (B) Find the root mean squared speed along the x-axis, Vx. (C) Would Vx be lower, higher, or the same under the same conditions if the gas were He instead of 02? Please explain your answer in 15 words or less.arrow_forwardTwo containers each hold 1 mole of an ideal gas at 1 atm. Container A holds a monatomic gas and container B holds a diatomic gas. The volume of each container is halved while the pressure is held constant. (Assume the initial volumes of containers A and B are equal.) (c) What is the ratio QA QB of the energy transferred to gases A and B?arrow_forward
- A sample of n = 2.00 moles of monoatomic ideal gas expands adiabatically, the work done on the gas is W = -5.00 x 103 J. The initial temperature and pressure of the gas are Ti = 600 K and Pi = 4.05 x 105 Pa. Calculate: a) the final temperature of the gas; b) the final pressure of the gas. R = 8.314 J/mol Karrow_forward5kg on it which can slide up and A cylinder with an ideal gas has a piston of mass m = down and does not permit the gas to escape. The inner radius of the cylinder is r = 6cm, The top of the piston is open to atmospheric pressure. The entire system is initially in thermal equilibrium with the environment, which is at 20°C and the height of the piston h = 10cm. If the temperature of the gas inside then is raised to 100°C, what is the final height of the piston? A 20 cm В 50 cm C 12.7 cm D 25.4 cm 18 cm Open to outside air, pressure po Piston, mass m Ideal- gasarrow_forwardA) A rigid tank contains 1.60 moles of helium, which can be treated as an ideal gas, at a pressure of 28.0 atm. While the tank and gas maintain a constant volume and temperature, a number of moles are removed from the tank, reducing the pressure to 5.00 atm. How many moles are removed? B) What If? In a separate experiment beginning from the same initial conditions, including a temperature Ti of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 28.0 atm to 5.00 atm. What is the final temperature (in °C) of the gas?arrow_forward
- (a) A rigid tank contains 1.50 moles of carbon dioxide, which can be treated as an ideal gas, at a pressure of 22.7 atm. While the tank and gas maintain a constant volume and temperature, a number of moles are removed from the tank, reducing the pressure to 5.10 atm. How many moles are removed? mol (b) What If? In a separate experiment beginning from the same initial conditions, including a temperature T, of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 22.7 atm to 5.10 atm. What is the final temperature (in °C) of the gas? °Carrow_forwardAn ideal diatomic gas undergoes an adiabatic compression during which time its volume changes from VA = 1300 cm3 to VB = 390 cm3. If its initial temperature is TA = 74.0°C, what is the final temperature TB of the gas?arrow_forwardProblem 1: A box contains N = 50 identical gas molecules divided between its two halves. What are: (a) the multiplicity of the equilibrium configuration, (b) the total number of possible microstates, and (c) the percentage of the time the system spends in the equilibrium configuration? (d) How do the answers change when N = 200 instead?arrow_forward
arrow_back_ios
arrow_forward_ios