Question
A rigid tank is divided into two compartments by a membrane. One compartment contains 22 kg
of CO2 at 25°C and 100 kPa, and the other compartment contains 16 kg of O2 at 25°C and 300 kPa.
Now the membrane is punctured and the two gases are allowed to mix. Assuming isothermal ideal
gas mixing, determine (a) partial pressure of both gases and (b) ΔHmix,ΔSmix, and ΔGmix after equilibrium has been reached.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- At 100°C the rms speed of nitrogen molecules is 576 m/s. Nitrogen at 100° C and a pressure of 2.5 atm is held in a container with a 10 cm x 10 cm square wall. Estimate the rate of molecular collisions (collisions/s) on this wall. Express your answer in collisions per second. ► View Available Hint(s) the rate of collisions = Submit VG ΑΣΦ ? collisions Sarrow_forward(a) An ideal gas occupies a volume of 1.2 cm³ at 20°C and atmospheric pressure. Determine the number of molecules of gas in the container. molecules (b) If the pressure of the 1.2-cm³ volume is reduced to 2.2 x 10-11 Pa (an extremely good vacuum) while the temperature remains constant, how many moles of gas remain in the container? molarrow_forwardThe PV diagram shows the compression of 40.9 moles of an ideal monoatomic gas from state A to state B. Calculate Q, the heat added to the gas in the process A to B. Data: PA= 1.90E+5 N/m2 VA= 1.83E+0 m3 PB= 1.01E+5 N/m2 VB= 8.90E-1 m3›44arrow_forward
- Two evacuated bulbs are connected by a tube of negligible volume. The volume of one of the bulbs is twice that of the other. The larger volume bulb is placed in a 200K Isother constant-temperature bath and the other in a 300K bath, and then 1.00mol of an ideal me gas is injected into the system. Find the final number of moles of gas in each bulb.arrow_forwardA closed system consisting of 2 lb of a gas undergoes a process during which the relation between pressure and volume is pV" = constant. The process begins with p₁ = 25 lbf/in², V₁ = 13 ft³ and ends with p2 = 100 lbf/in². The value of n = 1.3. Determine the final volume, V₂, in ft3, and determine the specific volume at states 1 and 2, in ft³/lb.arrow_forwardA sample of n = 2.00 moles of monoatomic ideal gas expands adiabatically, the work done on the gas is W = -5.00 x 103 J. The initial temperature and pressure of the gas are Ti = 600 K and Pi = 4.05 x 105 Pa. Calculate: a) the final temperature of the gas; b) the final pressure of the gas. R = 8.314 J/mol Karrow_forward
- 5kg on it which can slide up and A cylinder with an ideal gas has a piston of mass m = down and does not permit the gas to escape. The inner radius of the cylinder is r = 6cm, The top of the piston is open to atmospheric pressure. The entire system is initially in thermal equilibrium with the environment, which is at 20°C and the height of the piston h = 10cm. If the temperature of the gas inside then is raised to 100°C, what is the final height of the piston? A 20 cm В 50 cm C 12.7 cm D 25.4 cm 18 cm Open to outside air, pressure po Piston, mass m Ideal- gasarrow_forwardA) A rigid tank contains 1.60 moles of helium, which can be treated as an ideal gas, at a pressure of 28.0 atm. While the tank and gas maintain a constant volume and temperature, a number of moles are removed from the tank, reducing the pressure to 5.00 atm. How many moles are removed? B) What If? In a separate experiment beginning from the same initial conditions, including a temperature Ti of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 28.0 atm to 5.00 atm. What is the final temperature (in °C) of the gas?arrow_forwardOn a hot summer day, the density of air at atmospheric pressure at 34.5°C is 1.1866 kg/m³. (a) What is the number of moles contained in 1.00 m³ of an ideal gas at this temperature and pressure? mol (b) Avogadro's number of air molecules has a mass of 2.82 x 10-2 kg. What is the mass of 1.00 m³ of air? (Assume air is an ideal gas.) kg (c) Does the value calculated in part (b) agree with the stated density of air at this temperature? (Consider that it does if the values are within 10% of each other.) O Yes O Noarrow_forward
- (a) A rigid tank contains 1.50 moles of carbon dioxide, which can be treated as an ideal gas, at a pressure of 22.7 atm. While the tank and gas maintain a constant volume and temperature, a number of moles are removed from the tank, reducing the pressure to 5.10 atm. How many moles are removed? mol (b) What If? In a separate experiment beginning from the same initial conditions, including a temperature T, of 25.0°C, half the number of moles found in part (a) are withdrawn while the temperature is allowed to vary and the pressure undergoes the same change from 22.7 atm to 5.10 atm. What is the final temperature (in °C) of the gas? °Carrow_forwardAn ideal diatomic gas undergoes an adiabatic compression during which time its volume changes from VA = 1300 cm3 to VB = 390 cm3. If its initial temperature is TA = 74.0°C, what is the final temperature TB of the gas?arrow_forward(a) What is the gauge pressure in a 25.0oC car tire containing 3.60 mol of gas in a 30.0 L volume? (b) What will its gauge pressure be if you add 1.00 L of gas originally at atmospheric pressure and 25.0oC? Assume the temperature returns to 25.0oC and the volume remains constant.arrow_forward
arrow_back_ios
arrow_forward_ios