Chemistry by OpenStax (2015-05-04)
1st Edition
ISBN: 9781938168390
Author: Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Why is it important to understand atoms?arrow_forwardScientists J. J. Thomson and William Thomson (Lord Kelvin) made numerous contributions to our understanding of the atom’s structure. Which subatomic particle did J. J. Thomson discover, and what did this lead him to postulate about the nature of the atom? William Thomson postulated what became known as the “plum pudding” model of the atom’s structure. What did this model suggest?arrow_forwardThese questions concern the work of J. J. Thomson: From Thomson’s work, which particles do you think he would feel are most important in the formation of compounds (chemical changes) and why? Of the remaining two subatomic particles, which do you place second in importance for forming compounds and why? Come up with three models that explain Thomson’s findings and evaluate them. To be complete you should include Thomson’s findings.arrow_forward
- Constant Composition of Compounds Two samples of sugar are decomposed into their constituent elements. One sample of sugar produces 18.0 g carbon, 3.0 g hydrogen, and 24.0 g oxygen; the other sample produces 24.0 g carbon, 4.0 g hydrogen, and 32.0 g oxygen. Find the ratio of carbon to hydrogen and the ratio of oxygen to hydrogen for each of the samples, and show they are consistent with the law of constant composition.arrow_forwardThere are 1.699 1022 atoms in 1.000 g of chlorine. Assume that chlorine atoms are spheres of radius 0.99 and that they are lined up side by side in a 0.5-g sample. How many miles in length is the line of chlorine atoms in the sample?arrow_forwardThe average atomic masses of some elements may vary, depending upon the sources of their ores. Naturally occurring boron consists of two isotopes with accurately known masses ( 10B, 10.0129 amu and 11B, 11.0931 amu). The actual atomic mass of boron can vary from 10.807 to 10.8 19, depending on whether the mineral source is from Turkey or the United States. Calculate the percent abundances leading to the two values of the average atomic masses of boron from these two countries.arrow_forward
- Uranium-235 is the isotope of uranium commonly used in nuclear power plants. How many (a) protons are in its nucleus? (b) neutrons are in its nucleus? (c) electrons are in a uranium atom?arrow_forwardReference Section 5-2 to find the atomic masses of 12C and 13C, the relative abundance of 12C and 13C in natural carbon, and the average mass (in u) of a carbon atom. If you had a sample of natural carbon containing exactly 10,000 atoms, determine the number of 12C and 13C atoms present. What would be the average mass (in u) and the total mass (in u) of the carbon atoms in this 10,000-atom sample? If you had a sample of natural carbon containing 6.0221 1023 atoms, determine the number of 12C and 13C atoms present What would be the average mass (in u) and the total mass (in u) of this 6.0221 1023 atom sample? Given that 1 g = 6.0221 1023 u, what is the total mass of I mole of natural carbon in units of grams?arrow_forwardA fundamental idea of Daltons atomic theory is that atoms of an element can be neither created nor destroyed. We now know that this is not always true. Specifically, it is not true for uranium and lead atoms as they appear in nature. Are the numbers of these atoms increasing or decreasing? Explain.arrow_forward
- Click on the site (http://openstaxcollege.org/l/16PhetAtomMass) and select the Mix Isotopes tab, hide the Percent Composition and Average Atomic Mass boxes, and then select the element boron. Write the symbols of the isotopes of boron that are shown as naturally occurring in significant amounts. Predict the relative amounts (percentages) of these boron isotopes found in nature. Explain the reasoning behind your choice. Add isotopes to the black box to make a mixture that matches your prediction in (b). You may drag isotopes from their bins or click on More and then move the sliders to the appropriate amounts. Reveal the Percent Composition and Average Atomic Mass boxes. How well does your mixture match with your prediction? If necessary, adjust the isotope amounts to match your prediction. Select Nature’s mix of isotopes and compare it to your prediction. How well does your prediction compare with the naturally occurring mixture? Explain. If necessary, adjust your amounts to make them match Nature’s amounts as closely as possible. 21. Repeat Exercise 2.20 using an element that has three naturally occurring isotopes.arrow_forwardAverage Atomic Weight Part 1: Consider the four identical spheres below, each with a mass of 2.00 g. Calculate the average mass of a sphere in this sample. Part 2: Now consider a sample that consists of four spheres, each with a different mass: blue mass is 2.00 g, red mass is 1.75 g, green mass is 3.00 g, and yellow mass is 1.25 g. a Calculate the average mass of a sphere in this sample. b How does the average mass for a sphere in this sample compare with the average mass of the sample that consisted just of the blue spheres? How can such different samples have their averages turn out the way they did? Part 3: Consider two jars. One jar contains 100 blue spheres, and the other jar contains 25 each of red, blue, green, and yellow colors mixed together. a If you were to remove 50 blue spheres from the jar containing just the blue spheres, what would be the total mass of spheres left in the jar? (Note that the masses of the spheres are given in Part 2.) b If you were to remove 50 spheres from the jar containing the mixture (assume you get a representative distribution of colors), what would be the total mass of spheres left in the jar? c In the case of the mixture of spheres, does the average mass of the spheres necessarily represent the mass of an individual sphere in the sample? d If you had 80.0 grams of spheres from the blue sample, how many spheres would you have? e If you had 60.0 grams of spheres from the mixed-color sample, how many spheres would you have? What assumption did you make about your sample when performing this calculation? Part 4: Consider a sample that consists of three green spheres and one blue sphere. The green mass is 3.00 g, and the blue mass is 1.00 g. a Calculate the fractional abundance of each sphere in the sample. b Use the fractional abundance to calculate the average mass of the spheres in this sample. c How are the ideas developed in this Concept Exploration related to the atomic weights of the elements?arrow_forwardDetermine whether each statement that follows is true or false. a Dalton proposed that atoms of different elements always combine on a one-to-one basis. b According to Dalton, all oxygen atoms have the same diameter. c The mass of an electron is about the same as the mass of a proton. d There are subatomic particles in addition to the electron, proton, and neutron. e The mass of an atom is uniformly distributed throughout the atom. f Most of the particles fired into the gold foil in the Rutherford experiment were not deflected. g The masses of the proton and electron are equal but opposite in sign. h Isotopes of an element have different electrical charges. i The atomic number of an element is the number of particles in the nucleus of an atom of that element. j An oxygen 16 atom has the same number of protons as an oxygen17 atom. k The nuclei of nitrogen atoms have a different number of protons from the nuclei of any other element. l Neutral atoms of sulfur have a different number of electrons from neutral atoms of any other element. m Isotopes of different elements that exhibit the same mass number exhibit similar chemical behavior. n The mass number of carbon 12 atom is exactly 12g. o Periods are arranged vertically in the periodic table. p The atomic mass of the second element in the farthest right column of the periodic table is 10u. q Nb is the symbol of the element for which Z=41. r Elements in the same column of the periodic table have similar properties. s The element for which Z=38 is in both Group 2A/2 and the fifth period.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning