College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
At what velocity must a conductor 75 mm long cut a magnetic field of flux density 0.6T if an emf of 9V is to be induced in it? Assume the conductor, the field and direction of motion are mutually perpendicular.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A magnetic field has a magnitude of 0.0527 T and is uniform over a circular surface whose radius is 0.226 m. The field is oriented at an angle of 27.9o with respect to the normal to the surface. What is the magnetic flux through the surface?arrow_forwardAn MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 1.60 T field with his fingers pointing in the direction of the field. Find the magnitude of the average emf (in V) induced in his wedding ring, given its diameter is 2.26 cm and assuming it takes 0.210 s to move it into the field.arrow_forwardAn airplane is flying due north at 720 km/h. The Earth’s magnetic field has a northward component of 0.020 mT and a downward component of 0.050 mT (Southern Indiana). (a) If the wingspan (distance between wingtips) is 35 m, what is the motional emf between the wingtips? (b) Which wingtip has the higher electric potential?arrow_forward
- Consider the Hall voltage induced on a patient’s heart while being scanned by an MRI unit. l = 8.5 cmv = 7.5 cm/s Approximate the conducting path on the heart wall by a wire 8.5 cm long that moves at 7.5 cm/s perpendicular to a 1.50 T magnetic field. Find the Hall voltage across the patient's heart in mV.arrow_forwardAn MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.10 T field with his fingers pointing in the direction of the field. His wedding ring has a diameter of 2.11 cm, and it takes 0.320 s to move it into the field. (a)What average current is induced in the ring if its resistance is 0.0100 Ω? (Enter the magnitude in amperes.) A (b)What average power is dissipated (in W)? W (c) What average magnetic field is induced at the center of the ring? (Enter the magnitude in teslas.)Tarrow_forwardIn an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.400 cm thick is positioned along an east- west direction. Assume n = 8.46 × 1028 electrons/m3 and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 4.20 x 10¯12 v, what is the magnitude of the Earth's magnetic field at this location? µTarrow_forward
- MYMIVIVH uns w pui SIVIN IN WEHE saw piwa ISMIMIN 29. An electron is travelling at 100 km/s parallel to a long straight horizontal conductor a distance of 3.00 cm from the conductor. A current of 12.0 A runs through the wire as the electron travels parallel to it, in the same direction as the electron's velocity. Find the strength of the external electric field that will prevent the elec- tron from deviating from its original path. Express your answer in V/m.arrow_forwardIn an experiment designed to measure the Earth's magnetic field using the Hall effect, a copper bar 0.430 cm thick is positioned along an east-west direction. Assume n = 8.46 × 1028 electrons/m³ and the plane of the bar is rotated to be perpendicular to the direction of B. If a current of 8.00 A in the conductor results in a Hall voltage of 4.70 x 10-12 V, what is the magnitude of the Earth's magnetic field at this location? μTarrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON