College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 2.10 T field with his fingers pointing in the direction of the field. His wedding ring has a diameter of 2.11 cm, and it takes 0.320 s to move it into the field.
(a)What average current is induced in the ring if its resistance is 0.0100 Ω? (Enter the magnitude in amperes.) A
(b)What average power is dissipated (in W)?
W (c)
What average magnetic field is induced at the center of the ring? (Enter the magnitude in teslas.)T
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.00 T field with his fingers pointing in the direction of the field. Find the average emf induced in his wedding ring in mV, given its diameter is 2.2 cm and assuming it takes 0.45 s to move it into the field.arrow_forwardThe 5-cm by 8-cm rectangular coil of a bicycle generator is rotating at a rate of 125 rpm in a 255-mT magnetic field. The output voltage of the generator is used to power a bicycle headlight that has a total resistance of 360 N. (a) How many turns are there in the coil if the peak output voltage is 1.8 V? N = turns (b) What is the rms-average current through the headlight? Irms mAarrow_forwardAn MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.3 T field with his fingers pointing in the direction of the field. (a) Find the average emf induced in his wedding ring, given its diameter is 2 cm and assuming it takes 0.29 s to move it into the field.arrow_forward
- An MRI technician moves her hand from a region of very low magnetic field strength ( approximately zero) into the MRI scanner's field in a quick motion, taking 3.1 milliseconds. The MRI is essentially a solenoid, with 1500 loops of wire. By doing so, a current of 0.15 milliAmps is induced in her wedding ring. If her wedding ring has a diameter of 1.95 cm and it has measured resistance of 119 Ohms, what is the magnetic field in the MRI.arrow_forwardAn MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner's 1.60 T field with his fingers pointing in the direction of the field. Find the magnitude of the average emf (in V) induced in his wedding ring, given its diameter is 2.26 cm and assuming it takes 0.210 s to move it into the field.arrow_forwardA circuit is made with a resistor of resistance 25 ohms and a movable bar with length 15 cm moving to the left with speed 8 m/s. The whole circuit is in a magnetic field B = 1.5 T (into page). Use this set up to answer the following questions. What is the magnitude (no negative answers) of the power delivered to the resistor in watts? Answer to 4 decimal places.arrow_forward
- A loop of highly conducting wire is placed in a magnetic field that is increasing out of the page (through the loop) at a rate of 1.80 T/s. If the loop has an area of 0.400m^2, calculate the current flowing in Amps through the 5.00 ohm resistor.arrow_forwardThe magnetic field through a single loop of wire 14.0 cm in radius and of 11.5 Ω resistance changes with time as shown in the figure. Calculate the emf in the loop as a function of time. a)What is the emf at t = 1.0 s? For the sign take the loop in the plane of the paper, and the magnetic field out of the paper. Take clockwise to be positive emf. b)What is the emf at t = 3.0 s? c)What is the emf at t = 5.0 s? d)What is the current at t = 1.0 s?arrow_forwardIf 24.9 volt power supply is connected to a lamp with resistance 3.6 ohm. What would be the magnetic field induced at a point 8.9 centimeter away from the lamp? The answer is _______ Tesla.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON