Elementary Linear Algebra (MindTap Course List)
8th Edition
ISBN: 9781305658004
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Assume that the econometric model is as follows
Yt = β1 + β2X2t + β3X3t + β4X4t + β5X5t + ut
You decide to investigate the relationship of the above econometric model using
the null hypothesis of H0: β3 + β4 = 1 and β5 = 1.
- Derive the restricted regression that can be estimated from the above model
- The regressions are carried out on a sample of 96 quarterly observations, and the residual sums of squares (RSS) for the restricted and unrestricted regressions are 102.87 and 91.41, respectively. Perform the test. What is your conclusion?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 3 images
Knowledge Booster
Similar questions
- Olympic Pole Vault The graph in Figure 7 indicates that in recent years the winning Olympic men’s pole vault height has fallen below the value predicted by the regression line in Example 2. This might have occurred because when the pole vault was a new event there was much room for improvement in vaulters’ performances, whereas now even the best training can produce only incremental advances. Let’s see whether concentrating on more recent results gives a better predictor of future records. (a) Use the data in Table 2 (page 176) to complete the table of winning pole vault heights shown in the margin. (Note that we are using x=0 to correspond to the year 1972, where this restricted data set begins.) (b) Find the regression line for the data in part ‚(a). (c) Plot the data and the regression line on the same axes. Does the regression line seem to provide a good model for the data? (d) What does the regression line predict as the winning pole vault height for the 2012 Olympics? Compare this predicted value to the actual 2012 winning height of 5.97 m, as described on page 177. Has this new regression line provided a better prediction than the line in Example 2?arrow_forwardIn a study, data collected for 40 observations were used to model the dependent variable y with 8 independent variables under consideration, x1, x2, .. , Xg. Consider a stepwise regression run on the data. 1. What is the form of the model fit in step 1? How many models are fit? How is the "best" independent variable selected in this step? 2. What is the form of the model fit in step 2? How many models are fit? How is the "best" independent variable selected in this step? 3. What is the form of the model fit in step 3? How many models are fit? How is the "best" independent variable selected in this step? 4. The variables x3, x4, and x6 were deemed the best variables for predicting y. How do you recommend the researchers proceed from here? Why?arrow_forwardSuppose that Y is normal and we have three explanatory unknowns which are also normal, and we have an independent random sample of 12 members of the population, where for each member, the value of Y as well as the values of the three explanatory unknowns were observed. The data is entered into a computer using linear regression software and the output summary tells us that R-square is 0.85, the linear model coefficient of the first explanatory unknown is 7 with standard error estimate 2.5, the coefficient for the second explanatory unknown is 11 with standard error 2, and the coefficient for the third explanatory unknown is 15 with standard error 4. The regression intercept is reported as 28. The sum of squares in regression (SSR) is reported as 85000 and the sum of squared errors (SSE) is 15000. From this information, what is SSE/SST? (a) .2 (b) .13 (c) NONE OF THE OTHERS (d) .15 (e) .25arrow_forward
- Suppose that Y is normal and we have three explanatory unknowns which are also normal, and we have an independent random sample of 21 members of the population, where for each member, the value of Y as well as the values of the three explanatory unknowns were observed. The data is entered into a computer using linear regression software and the output summary tells us that R-square is 0.9, the linear model coefficient of the first explanatory unknown is 7 with standard error estimate 2.5, the coefficient for the second explanatory unknown is 11 with standard error 2, and the coefficient for the third explanatory unknown is 15 with standard error 4. The regression intercept is reported as 28. The sum of squares in regression (SSR) is reported as 90000 and the sum of squared errors (SSE) is 10000. From this information, what is the number of degrees of freedom for the t-distribution used to compute critical values for hypothesis tests and confidence intervals for the individual model…arrow_forwardSuppose that Y is normal and we have three explanatory unknowns which are also normal, and we have an independent random sample of 21 members of the population, where for each member, the value of Y as well as the values of the three explanatory unknowns were observed. The data is entered into a computer using linear regression software and the output summary tells us that R-square is 0.8, the linear model coefficient of the first explanatory unknown is 7 with standard error estimate 2.5, the coefficient for the second explanatory unknown is 11 with standard error 2, and the coefficient for the third explanatory unknown is 15 with standard error 4. The regression intercept is reported as 28. The sum of squares in regression (SSR) is reported as 80000 and the sum of squared errors is (SSE) 20000. From this information, what is the value of the hypothesis test statistic for evidence that the true value of the coefficient of the second explanatory unknown exceeds 5? (a) 4 (b) 3…arrow_forwardThe administration of a midwestern university commissioned a salary equity study to help establish benchmarks for faculty salaries. The administration utilized the following regression model for annual salary, y : ?(?) β0+β1x ,where ?=0 if lecturer, 1 if assistant professor, 2 if associate professor, and 3 if full professor. The administration wanted to use the model to compare the mean salaries of professors in the different ranks. a) Explain the flaw in the model. b)Propose an alternative model that will achieve the administration’s objective. c) If the global F-test for the model you proposed in 2 is conducted, what would be the value of the numerator degrees of freedom?arrow_forward
- Consider the following simple regression model of house prices: house_price = β0 + β1*land_size + u. What could be included in u? Name 2 examples.arrow_forwardShow that an interaction term of a dummy variable and a regressor changes the slope of a regression line..arrow_forwardThe number of pounds of steam used per month by a chemical plant is thought to be related to the average ambient temperature (in F) for that month. The past year’s usage and temperatures are in the following table: Assuming that a simple linear regression model is appropriate, fit the regression model relating stem usage (y) to the average temperature (x). What is the estimate of Sigma2? What is the estimate of expected stem usage when the average temperature is 55 F? What change in mean stem usage is expected when the monthly average temperature changes by 1 F? Suppose that the monthly average temperature is 47 F. Calculate the fitted value of y and the corresponding residual. Test for significance of regression using α=0.01 (Use ANOVA). Calculate the r2 of the model. Find a 99% CI for B1 .arrow_forward
- The least-squares regression equation is y=784.6x+12,431 where y is the median income and x is the percentage of 25 years and older with at least a bachelor's degree in the region. The scatter diagram indicates a linear relation between the two variables with a correlation coefficient of 0.7962. Predict the median income of a region in which 25% of adults 25 years and older have at least a bachelor's degree.arrow_forwardSuppose that Y is normal and we have three explanatory unknowns which are also normal, and we have an independent random sample of 16 members of the population, where for each member, the value of Y as well as the values of the three explanatory unknowns were observed. The data is entered into a computer using linear regression software and the output summary tells us that R-square is 45/62, the linear model coefficient of the first explanatory unknown is 7 with standard error estimate 2.5, the coefficient for the second explanatory unknown is 11 with standard error 2, and the coefficient for the third explanatory unknown is 15 with standard error 4. The regression intercept is reported as 28. The sum of squares in regression (SSR) is reported as 90000 and the sum of squared errors (SSE) is 34000. From this information, what is the critical value needed to calculate the margin of error for a 95 percent confidence interval for one of the model coefficients? (a) 2.069 (b) 2.110 (c)…arrow_forwardNonearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning