MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The least-squares regression equation is y=784.6x+12,431 where y is the
Predict the median income of a region in which 25% of adults 25 years and older have at least a bachelor's degree.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.Similar questions
- A regression was run to determine if there is a relationship between hours of TV watched per day (x) and number of situps a person can do (y).The results of the regression were:y=ax+b a=-1.38 b=39.555 r2=0.693889 r=-0.833 Assume the correlation is significant, and use this to predict the number of situps a person who watches 7 hours of TV can do (to one decimal place)arrow_forwardUse the least squares regression line of this data set to predict a value. Meteorologists in a seaside town wanted to understand how their annual rainfall is affected by the temperature of coastal waters. For the past few years, they monitored the average temperature of coastal waters (in Celsius), x, as well as the annual rainfall (in millimetres), y. Rainfall statistics • The mean of the x-values is 11.503. • The mean of the y-values is 366.637. • The sample standard deviation of the x-values is 4.900. • The sample standard deviation of the y-values is 44.387. • The correlation coefficient of the data set is 0.896. The least squares regression line of this data set is: y = 8.116x + 273.273 How much rainfall does this line predict in a year if the average temperature of coastal waters is 15 degrees Celsius? Round your answer to the nearest integer. millimetresarrow_forwardWhen the heights (in inches) and shoe lengths (also in inches) were measured for a large random sample of individuals, it was found that r = 0.89, and a regression equation was constructed in order to further explore the relationship between shoe length and height, with height being the response variable. From this information, what can we conclude? The correlation coefficient should have no units. The regression equation relating shoe length to height must have a slope equal to 0.89. The regression equation relating shoe length to height must have a positive intercept. O Approximately 89% of the variability in height can be explained by the regression equation. Because the value of r is less than 1, we should characterize this relationship as being weak.arrow_forward
- A least squares regression line was calculated to relate the length (cm) of newborn boys to their weight in kg. The line is weight=−5.82+0.1601 length. A newborn was 48 cm long and weighed 3 kg. According to the regression model, what was his residual? What does that say about him?arrow_forwardFrom a regression equation r2= 0.39 and the slope = -2.8 What is the linear correlation coefficient r?arrow_forwardThe correlation coefficient between the yearly returns of two mutual funds is 0.20. What does that mean about the strength and direction of the linear relationship between the returns of the two funds?arrow_forward
- The least-squares regression equation is y = 689.9x + 14,803 where y is the median income and x is the percentage of 25 years and older with at least a bachelor's degree in the region. The scatter diagram indicates a linear relation between the two variables with a correlation coefficient of 0.7256. Complete parts (a) through (d). (a) Predict the median income of a region in which 20% of adults 25 years and older have at least a bachelor's degree. (Round to the nearest dollar as needed.) . TOLED dian Income Media 55000- 20000- 15 20 25 30 35 40 45 50 55 60 Bachelor's 96 Qarrow_forwardThe least-squares regression equation is y=620.6x+16,624 where y is the median income and x is the percentage of 25 years and older with at least a bachelor's degree in the region. The scatter diagram indicates a linear relation between the two variables with a correlation coefficient of 0.7004. In a particular region, 28.3 percent of adults 25 years and older have at least a bachelor's degree. The median income in this region is $37,389. Is this income higher than what you would expect? Why?arrow_forwardThe least-squares regression equation is y=761.7x+13,208 where y is the median income and x is the percentage of 25 years and older with at least a bachelor's degree in the region. The scatter diagram indicates a linear relation between the two variables with a correlation coefficient of 0.7483. Predict the median income of a region in which 20% of adults 25 years and older have at least a bachelor's degree.arrow_forward
- After performing a statistical regression on a set of data the value of the correlation coefficient r was -0.2041. What does that imply about the data?arrow_forwardSuppose there is a significant correlation between two variables. Describe a case under which it might be inappropriate to use the linear regression equation for prediction.arrow_forwardA trucking company considered a multiple regression model for relating the dependent variable y = total daily travel time for one of its drivers (hours) to the predictors x, = distance traveled (miles) and x, = the number of deliveries made. Suppose that the model equation is Y = -0.800 + 0.060x, + 0.900x2 + € (a) What is the mean value of travel time when distance traveled is 50 miles and four deliveries are made? 5.8 v hr (b) How would you interpret ß1 = 0.060, the coefficient of the predictor X1? o When the number of deliveries is held fixed, the average change in travel time associated with a one-mile (i.e. one unit) increase in distance traveled is 0.060 hours. O The total daily travel time increases by 0.060 hours when the distance traveled increases by 1. O When the number of deliveries is constant, the average change in travel time associated with a ten-mile (i.e. one unit) increase in distance traveled is 0.060 hours. O The average change in travel time associated with a…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman