Question
As we read in the book, a star that appears to be 1 magnitude brighter will have approximately 2.5 times as much flux hitting an observer's detector/telescope/eye (i.e. a star with an apparent magnitude of 4 has approximately 2.5 times more flux hitting the detector as a star with an apparent magnitude of 5). With this in mind what is the approximate ratio of the flux hitting the a detector for a star with an apparent magnitude of 7 compared to a star with an apparent magnitude of 13? (hint: remember that magnitudes follow a logarithmic scale, not a linear one)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images

Knowledge Booster
Similar questions
- If a T Tauri star is the same temperature as the sun but is ten times more luminous, what is its radius?arrow_forwardIn a laboratory, the Balmer-beta spectral line of hydrogen has a wavelength of 486.1 nm . If the line appears in a star’s spectrum at 485.8 nm , what is the star’s radial velocity? Is it approaching or receding? Is this a blueshift or a redshift?arrow_forwardStar 1 and star 2 have the same V-magnitude, V = 7.5. However, they have different B-magnitudes, B1 = 7.2 and B2 = 8.5. What is the flux ratio, f1/f2, in the B-band?arrow_forward
- You are trying to take an image of a particular star with apparent magnitude m=10, and need to figure out how long you will need to expose for with your telescope. Your friend tells you that her telescope of diameter 0.07 meters can detect the star in 79 minutes. How long would it take for you to use your telescope (diameter 0.13 meters) to detect a star with an apparent magnitude m=12? (Answer in minutes)arrow_forwardIf a T Tauri star is the same temperature as the Sun but is eighteen times more luminous, what is its radius relative to the Sun? (Hint: Use the luminosity-radius-temperature relation: L L = R R 2 T T 4 .) R R =arrow_forwardCalculate by how many times Betelgeuse is brighter than the Sun, if its parallax is 0.006 arcsec, and its apparent magnitude is m = +.5. Can you first use the parallax to calculate the distance and then use the magnitude-distance formula to find the absolute magnitude of Betelgeuse and finally, compare it to the absolute magnitude of the Sun which is -26,74 because other experts used other methods and the answer was not correct.arrow_forward
- For a star with surface temperature 5,100 K, what is the peak frequency of light from the sun? Write your answer in THz (1012 Hz), to zero decimal places. Take the speed of light to be c=3 x 108 m/s.arrow_forwardWe will take a moment to compare how brightly a white dwarf star shines compared to a red giant star. For the sake of this problem, lets assume a white dwarf has a temperature roughly twice as large as a red giant star. As for their stellar radii, the white dwarf has a radius about 1/10000th that of a red giant star. With this in mind, how does the luminosity of a red giant star compare to that of a white dwarf? (Put differently, find the ratio of their luminosities a.k.a. how many times more luminous is the red giant than the white dwarf? An answer of less than 1 means the white dwarf is more luminous, an answer of 1 means they have the same luminosity, and an answer greater than 1 means the red giant is more luarrow_forwardOne way to calculate the radius of a star is to use its luminosity and temperature and assume that the star radiates approximately like a blackbody. Astronomers have measured the characteristics of central stars of planetary nebulae and have found that a typical central star is 16 times as luminous and 20 times as hot (about 110,000 K) as the Sun. Find the radius in terms of the Sun’s. How does this radius compare with that of a typical white dwarf?arrow_forward
- (a) The figure shows the three stars and their velocities. Which star has the largest proper motion? Which star has the smallest proper motion? A B Eartharrow_forwardanswer for 3arrow_forwardIntegrate the first equation over all wavelengths to find an expression for the total luminosity of a black body star. (See the second equation for a hint)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios