
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question

Transcribed Image Text:As shown in the figure, a 260-ft tank contains 25 lb of H20 initially at 30 lbf/in?. The tank is connected to a large steam line carrying
steam at 200 lbf/in?, 450°F. Steam flows into the tank through a valve until the tank pressure reaches p2 = 160 lbf/in? and the
temperature is 400°F, at which time the valve is closed.
Steam at
Tank
200 lbf/in.2.
Valve
(1)
Initially:
30 lbfin.?, mı = 25 lb
(2)
Finally:
P, lbfin.?, 400°F.
450°F
(1)
Determine the amount of mass that enters the tank, in Ib, and the heat transfer to the tank from its surroundings, in Btu.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images

Knowledge Booster
Similar questions
- 1) A 10 Liter pressure cooker has an operating pressure of 400 kPa. Initially, % of the volume is filled with saturated water and the rest is saturated vapor. What temperature is the vessel? After heating for 5 hours, the pressure cooker ran dry. What was the average rate of heat transfer?arrow_forwardYou have a tank that is 0.01 m^3 and is initially evacuated. You then hook this up to a line that supplies N2 at a pressure of P_1 = 5 bar and a T_1 = 350 K. The tank fills adiabatically (you can assume there is no heat flow to the walls of the tank), and the filling ends when no more N2 flows into the tank. Find a) the final pressure of the gas in the tank, and b) the final temperature of the gas in the tank. You can assume N2 is an ideal gas with a CP* = 29 J/mol K. NOTE: Mainly I am confused on how the evacuated tank factors into the work for b). What I did was use the ideal gas formula to find a value for N2*T2 (601.395) but I am no longer certain how to continue in the work. I was assuming the practice question had meant the temperature of the tank was 0 initially but it leads to a negative mole value. For a) I got 5 bar, arguing the flow would stop when the pressure of tank and line are equalarrow_forward
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY